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Abstract 

The focus of this research is to provide methods for generating precise parameter estimates 

in the face of potentially significant parameter variations such as system component failures. The 

standard Multiple Model Adaptive Estimation (MMAE) algorithm uses a bank of Kaiman filters, 

each based on a different model of the system. A new moving-bank MMAE algorithm is developed 

based on exploitation of the density data available from the residuals of the Kaiman filters within 

the MMAE. The methods used to exploit this information include various measures of the density 

data and a decision-making logic used to move, expand, and contract the MMAE bank of filters. 

Parameter discretization within the MMAE refers to selection of the parameter values assumed 

by the elemental Kaiman filters. A new parameter discretization method is developed based on 

the probabilities associated with the generalized Chi-Squared random variables formed by residual 

information from the elemental Kaiman filters within the MMAE. Modifications to an existing 

discretization method are also presented, permitting application of this method in real time and 

to nonlinear system models or linear/linearized models that are unstable or astable. These new 

algorithms are validated through computer simulation of an aircraft navigation system subjected to 

interference/jamming while attempting a successful precision landing of the aircraft. 
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New Algorithms for Moving-Bank Multiple Model 
Adaptive Estimation 

Chapter 1 - Introduction 

1.1 Overview 

Parameter and state estimation are critical in many of today's complex systems. A motivating 

example is that of providing an accurate navigation solution to an aircraft performing a precision 

landing. Sufficient accuracy of the state estimate is needed to provide the desired navigation solu- 

tion. Adequate parameter estimation is needed so the system can adapt to a failure, such as the onset 

of interference or jamming of the onboard GPS receiver, and ensure performance is maintained. 

The terms failure detection and isolation (FDI) and parameter estimation will appear synony- 

mous in this document, since the methods and theories presented could be applied to either a failure 

detection or parameter estimation problem. If failure detection is viewed as event detection and 

event detection is accomplished by discerning changes in the parameter estimates, then adequate 

parameter estimation will lead to adequate failure detection. 

The focus of mis research is to develop methods for generating precise parameter estimates 

in the face of potentially significant parameter variations such as system component failures. The 

discrete-time system is presented in state space form with uncertain parameters (such as a failure 

status parameter) affecting the system matrices. This leads to the idea that nominal parameter values 

represent the system in its fully functional mode and variations in certain parameters indicate a pos- 

sible failure or significant event. The objective is to identify the unknown parameter, a, precisely 

given the time history of a set of measurements, z. This is illustrated in Figure 1 where the mea- 

surements are used to generate the parameter estimate, ä, and the state estimate, x, simultaneously. 



State and 
7)     Parameter 

Estimator 

Figure 1. Generic State and Parameter Estimator 

A Special class of the generic state and parameter estimator is the Multiple Model Adaptive Es- 

timator (MMAE) shown in Figure 2, with details presented in Section 2.2. The parameter estimate, 

ä, is generated in the same manner as x but is not shown to avoid cluttering the diagram. Each of 

J (j = 1,2,..., J) Kaiman filters in the bank models the operation of the system under a distinct 

failure mode, or more generally, under the conditions of a hypothesized discrete value of the vec- 

tor of parameters that describe the system model. Each filter independently produces its own state 

estimate, x,-, and residual vector, r^. The residuals are monitored to determine which filter best 

models the system and its sensors at the current time. Each filter's state estimate, x,-, is blended to- 

gether through a probability weighted average based on the conditional probability, pj, ofthat filter 

modeling the true current system operating condition. This blending allows for partial failures be- 

ing handled with hypothesized failure conditions composed of only "fully functional system" and 

"full failed sensor" conditions. A high probability of almost one indicates that a filter is extremely 

accurate in its modeling and will almost completely determine the final blended estimate, while all 

other model estimates will receive almost zero weighting. From an FDI standpoint, monitoring the 

elemental filter residuals or the conditional probabilities will provide insight into the failure mode 

of the system. Additionally, it will be shown in Section 2.2 that the parameter estimate ä can be 

directly found via Equation (51) as a best estimate of the current failure status. 
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Figure 2. Multiple Model Adaptive Estimation Algorithm 

The primary motivation for pursuing multiple model techniques such as MMAE over algo- 

rithms involving only one model of the system is the responsiveness of the MMAE to changes in 

parameter values. Classical state and parameter estimation algorithms, such as maximum likeli- 

hood estimators [64,74,75,79,80], that have only a single Kalman-like state estimator into which 

estimated parameters are inserted, do not have the capacity to respond as quickly or as well to real- 

world parameter changes as do multiple model algorithms incorporating parallel Kaiman filters. It 

is more difficult and time-consuming to generate updated parameter estimates based on a single 

filter's residuals than to do so by comparing the quality of residuals from numerous filters, each 

based on a different hypothesized parameter value. One argument against multiple model algo- 

rithms was the computational loading associated with running several models in parallel. However, 
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advancements in computer technology (particularly distributed and parallel computing capability) 

have made MMAE's realizable for a large class of problems. 

To avoid the potentially large number of elemental filters needed for an MMAE bank, the 

concept of a "moving bank" of fewer filters has been developed [18-20,47,66,67]. For instance, 

if there are two uncertain parameters and each can assume 10 possible values, then J = 102 = 100 

separate filters must be implemented in a full-scale fixed-bank MMAE, even if the parameters are 

treated as unknown constants. The moving-bank MMAE is identical to the full-bank estimator 

discussed previously, except J corresponds to the smaller number of elemental filters in the moving 

bank rather than the total number of possible discrete parameter vector values. There is then an on- 

line dynamic redeclaration of which points in the parameter space are to be used for the basis of the 

elemental filters within the MMAE, i.e., which points are to define the current "moving bank". In 

the example above, one might choose the three discrete values of each scalar parameter that most 

closely surround the estimated value, requiring J = 32 = 9 separate elemental filters, rather than 

100. This is depicted in Figure 3. 

Which particular J filters are in the bank at a given time can be determined by one of the five ad 

hoc decision mechanisms presented in Section 2.2.3, with the intention of keeping the estimate of the 

parameter in the bounds of the bank and "optimally" placed. For some of the decision mechanisms, 

the parameter estimate is kept in the center of the bank of filters. If the parameter estimate is found 

to move, then the bank of filters will move within the parameter space as shown in Figure 4, thus 

tracking the parameter 

For some of the decision mechanisms, the true parameter value may appear to have moved out- 

side the bounds of the current bank; so the bank could expand to the coarsest level of discretization 

to bring the true parameter value into the bank, as illustrated in Figure 5. Similarly, once the true 

parameter value is deemed to lie within the portion of the parameter space currently spanned by the 
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Figure 3. Moving-Bank MMAE for a Two-Dimensional Parameter Space 
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bank, and if that bank were not at the finest discretization level, the bank could be contracted to bring 

the filter-assumed values closer to the true parameter and thus improve the parameter (and state) es- 

timate. In addition to the decision mechanisms introduced above, is the issue of how to discretize 

the parameter spaced spanned by the MMAE bank. This is addressing the question "If allowed J 

discretized points (where J is preselected) in the parameter space, where should they be placed for 

best state estimation precision, or best parameter estimation accuracy, or best performance with re- 

spect to some other chosen criterion?" One discretization method developed by Sheldon [68,69] is 

presented in Section 2.2.3.2. 

Given that MMAE is chosen as the multiple model algorithm being pursued in this research, 

Figure 1 is represented functionally by the conventional MMAE shown in Figure 6. Notice that the 

-* 
Conventional 

MMAE 
■> 

Figure 6. Conventional MMAE 

parameters and states are still estimated simultaneously given the measurement history. However, 

optimal state estimation and optimal parameter estimation often require different choices for design 

variables such as tuning values for a Kaiman filter Additionally, state estimators based on system 

models are sensitive to the accuracy in the model parameters. This presents the designer with a 

trade-off between obtaining good state estimates versus precise parameter estimates. Therefore, a 

decomposition approach depicted in Figure 7 has been proposed by Miller [53] to give the designer 

the flexibility to optimize each estimator for its intended use. The architecture is referred to as a 

Modified MMAE or M3AE. The idea is first to perform the failure detection by tuning and discre- 
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Figure 7. M3AE Architecture 

tizing the MMAE bank for best parameter estimation and then to generate the state estimates with 

a single Kaiman filter based on that good parameter estimate. This architecture has been shown by 

Miller [53] to provide superior state estimation results when compared to a conventional MMAE. 

A variety of previously developed techniques used for parameter and state estimation will be 

presented in Chapter 2 as background information. Specifically, Fixed-Bank and Moving-Bank 

Multiple Model Adaptive Estimation algorithms have been used for parameter and state estimation 

[1,2,5,14,15,17-22,26,27,33-36,42,47,48,50-52,55,66-72]. The details of these algorithms 

will be presented in Section 2.2. Previous researchers have resorted to using ad hoc techniques 

within the MMAE algorithm to enhance performance. However, these ad hoc techniques are often 

suboptimal and could potentially be improved with closed form analytical solutions designed for 

optimality. 

The major contributions of this dissertation are the development of new adaptive algorithms 

and discretization methods used to control the placement in parameter space of the discrete para- 

meter values upon which to base the Kaiman filters in a moving-bank MMAE. These algorithms 

and methods are applicable to either the conventional MMAE or the M3AE architecture. Computer 
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simulations were conducted for validation and proof of concept. The specific real-world application 

that motivated this research is parameter estimation for fault tolerant aircraft precision landing. 

1.2 Dissertation Overview 

Chapter 2 presents background concepts related to this dissertation. Discussions focus on ex- 

isting theories pertaining to hypothesis testing and multiple model state and/or parameter estimation. 

Considerable emphasis is placed on moving-bank MMAE. 

Chapter 3 gives a detailed account of the theories developed through this dissertation research. 

Two new algorithms dedicated to moving-bank MMAE are introduced and modifications to exist- 

ing algorithms are presented. Various combinations of these algorithms are described with results 

discussed in Chapter 5. An attempt is made to explain the thought processes fully that led to the 

development of the algorithms rather than simply stating the final results. 

Chapter 4 describes the example problem used to validate the theories presented in Chap- 

ter 3. Many of the algorithms have design parameters which are identified for the example prob- 

lem. Simulation data based on the aircraft precision landing application is plotted and tabulated, to 

demonstrate the enhancement of performance accomplished through the new moving-bank MMAE 

methodologies. 

Finally, Chapter 5 compares the results obtained using the various algorithms, draws pertinent 

conclusions and provides recommendations for future research. 
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Chapter 2 - Background Concepts 

This chapter provides background theory for many of the techniques used in parameter and 

state estimation. Some emphasis is given to applying these techniques to an integrated, multi-sensor, 

aircraft navigation system. This will provide a motivating real-world problem, and the techniques 

are evaluated based on their ability to meet the more general research objectives of optimal parameter 

and state estimation. 

A typical multi-sensor navigation system which incorporates an inertial navigation system 

(INS), a global positioning system (GPS) receiver, a barometric altimeter and a radar altimeter is 

schematically shown in Figure 8. This integration scheme is used as an example for the purpose of 

discussing the more general FDI techniques that apply to a larger class of problems. Depending on 

the application, consideration should be given to both differential GPS (DGPS) and carrier-phase 

GPS to enhance the accuracy of the navigation solution. Chapter 1 indicated that application of this 

research to aircraft precision landing is intended, and it is important to recognize the need for the 

radar altimeter to enhance the vertical-channel navigation precision during approach and landing 

maneuvers [7,16]. 

A centralized Kaiman filter (or possibly a distributed Kaiman filter discussed in Section 2.1.5) 

is shown to integrate the various sensors and provide a feedforward correction to the navigation 

solution provided by the INS. An alternative to feedforward correction would be to feed back a 

correction to reset the INS and thus account for its errors. This approach is rarely used because the 

Federal Aviation Association (FAA) has deemed that feedback to the INS in these types of integration 

schemes has the potential to corrupt the INS and degrade the navigation solution seriously. Given a 

failure in any of the sensors, the navigation solution will degrade [30,58,75]. It is desired to detect 
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any such failures, or significant events such as the onset of interference or attempted jamming of 

GPS signals (not outright failures, but significant changes potentially causing unacceptable degra- 

dation of performance), and, when possible, compensate for these changes. 

2.1 Parameter Estimation and Failure Detection 

2.1.1   Voting Method 

One of the simplest failure or event detection techniques is the use of redundant elements for 

voting. Given a system with triple redundancy, an algorithm can be easily designed that will com- 

pare the outputs of each identical element, allowing them to vote on the failure status condition of 

the redundant elements. Simply stated, if two of the elements agree but the third element provides 
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a significantly different reading, the latter is considered inadequate to provide accurate information 

and is removed from the system. Once this element is removed from the system, the algorithm is 

unable to isolate a failure. If the two remaining elements disagree, a failure has been detected but 

isolation is not possible. The major disadvantage of the voting method is the need for sufficient re- 

dundant hardware to ensure satisfactory performance [13,75,79], with the ensuing weight, volume, 

and cost disadvantages. 

2.1.2   Chi-Square Test and the Kaiman Filter 

The chi-square test provides binary testing of simple hypotheses based on the Kaiman filter 

residuals, r(i»). To set the context, details of the Kaiman filter will be discussed first. A linear 

discrete-time Kaiman filter with sampled data measurements is presented as the standard form con- 

sidered for this research. Note that nonlinear models resulting in the use of extended Kaiman filters 

(EKF) may be necessary to represent the true system adequately; however, the following devel- 

opment will focus on the linear Kaiman filter for simplicity. Moreover, the system is actually de- 

fined by continuous-time dynamics equations with sampled data measurements but the "equivalent 

discrete-time model" [44, pp. 42-43] will be used for implementation on a digital computer. The 

state and measurement equations are as follows: 

x(ti)   =   «(ti^-Ox^-O + Bd^-Ou^-O + Gd^-^WdCti-i) (1) 

z(«i) = H(ti)x(ti)+v(ti) (2) 

where: 
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x =    n-dimensional system state vector 

<& =    state transition matrix, the discrete equivalent 

of the system dynamics matrix 

Bd        =    discrete equivalent of the system control input matrix 

u =    deterministic control input vector 

Gd       =    discrete equivalent of the noise input matrix 

wd        =    discrete-time zero-mean white Gaussian dynamics 

driving noise vector with covariance Qd(£i) at each U 

z =    m-dimensional measurement vector 

H =     system output matrix 

v =    discrete-time zero-mean white Gaussian measurement 

noise vector with covariance R(U) at U 

and initial condition x(£0) modeled as Gaussian, with mean x(i0) and covariance P(*o), and as- 

sumed independent of wd and v. Also assume that wd and v are independent. From the initial 

conditions, the Kaiman filter states can be propagated using the following equations: 

x(ir)   =   fcfe.ii-Oxftt^ + Bdfe-iMti-i) (3) 

P(i-)   =   #(ti>ti_1)P(<+1)*T(ti)ti_1)+Gd(<i_i)Qd(<i-i)Gj(ti_i) (4) 
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with measurement updates incorporated as follows: 

A(U)   =   H(ii)P(i7)HT(<i)+R(ti) (5) 

K(ti)=P(ir)HT(ii)A-1(ii) (6) 

x(t+) = x(tr) + Kfe)fe - H(«i)x(tr)] (7) 

P(tf)   =   PCtrJ-KWH^PCtr) (8) 

The residual covariance, Afc), has been identified in Equation (5) and the Kaiman filter residual 

vector is given by 

r(«i)=zi-H(ti)x(tr) (9) 

If the filter model matches the "truth" model, then the residuals will be a zero-mean white 

Gaussian process with known residual covariance, A(U) [44]. Larger magnitudes of the residuals 

than anticipated by the filter-computed A(ij) indicate a mismatch between truth and the filter- 

assumed model. If the residuals have the anticipated characteristics for a period of time, but later 

increase in magnitude beyond what is anticipated, then this would imply that a parameter change has 

occurred in the real world. These increased magnitudes may appear as a nonzero mean or a change 

in the variance of the residuals. The chi-square random variable, x(h), provides a test statistic that 

puts a quadratic penalty on variations in the residuals: 

X(h)   =       £    ^(tOA-^rfo) (10) 
i=k-N+l 
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where N is the size of a window sliding across the residual values (used to make decisions based 

on the most recent N residuals). The residual values are a result of the real-world dynamics and 

the filter-assumed dynamics model, but the system dynamics are not explicitly present in Equation 

(10); so this test is relying completely on the information contained in the residuals. A detection 

rule based on an empirically determined threshold, T, would be 

x(tk)   >   T      =>•       Parameter Change 

x(h)   <   T      =$■      No Parameter Change (11) 

The threshold value would be chosen to meet a desired performance specification such as minimized 

response time to real failures or parameter variations while maintaining no more than a maximum 

admissible false alarm rate. A false alarm is defined here as declaring a failure when no failure actu- 

ally exists. Notice that the chi-square test combines the residual vector and the residual covariance 

into a single scalar, so it lacks the ability to monitor the individual scalar residuals. This prohibits 

the test from isolating failures, but it will often prove easy to implement and effective for detecting 

many types of failures. This shortcoming can be overcome by implementing MMAE algorithms 

which conceptually perform chi-square tests on many parallel Kaiman filters. This approach will 

be presented in Section 2.2. 

2.13   Sequential Probability Ratio Test (SPRT) 

Another simple hypothesis test based on the Kaiman filter residuals is the SPRT [76]. Recall 

that, if the filter model matches the "truth" model, then the residuals will be a zero-mean white 

Gaussian process with known residual covariance, A(£j). Associate this "no-fail" condition with 

hypothesis, H0. Assume that a failure has manifested itself as a change in the mean of a residual 

and the residual covariance remains unchanged. Associate this "failed" condition with hypothesis, 

16 



Hi. Now form the log likelihood ratio for the im sample as 

j     _   ,   /(r(fi)|H1,Z(t<-i) = Zi-1) 
Li   ~   m/(r(ii)|H0,Z(ii_1) = Zi_1) 

l    ; 

where f(r(ti)\Ej, Z(tj_i) = Zj_i) is the density function of the residuals at time U conditioned on 

the hypothesis H, fory = 0,1 and the observed measurement history up to time t*_i. Notationally, 

the measurement history random vector Z(U) is made up of partitions z(*i),..., z(U) as described 

in Equation (2) that are the measurement vectors available at the sample times ti,...,U; similarly, 

the realization Z* of the measurement history vector has partitions zi,..., z*. Then the test statistic, 

si, is given by 

* = 5> (13> 
i=i 

This test statistic is compared to two thresholds, TA and TB, using the following decision logic 

si > lnT^i   =►   Choose Hi 

lnTg < si < IIITA   =»   take another sample 

*j<lnTB   =*•   Choose H0 (14) 

The thresholds can be arbitrarily chosen based on simulations or determined analytically as shown 

below, unlike the chi-square test threshold which was only found empirically. Define a false alarm 

rate, a, as the probability of incorrectly declaring hypothesis Hi is valid when H0 is true. Define a 

missed alarm rate, ß, as the probability of not declaring hypothesis Hi is valid when Hi is true. 
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The thresholds are then governed by 

TA < — (15) a 

TB>-£- (16) 
1 — a 

and in practice the thresholds are selected at the equalities. Hence, the thresholds are determined 

by the chosen values of a and ß. The SPRT is very similar to the well known Neyman-Pearson 

test [65, pp. 107-110], which is the most powerful test given a simple hypothesis test satisfying a 

desired false alarm rate for a finite data set. The SPRT is superior [32] to the Neyman-Pearson test 

for sequential data sets such as those considered in this research. 

The SPRT appears slightly more cumbersome than the chi-square test but provides a closed 

form solution for choosing threshold values. A single SPRT still lacks the ability to isolate failures, 

as did the chi-square test. However, multiple SPRT's could be used to test several hypotheses and 

thus improve parameter estimation [12]. 

2.1.4   Generalized Likelihood Ratio (GLR) Test 

The GLR test is similar in nature to the Chi-Square test, but with the added benefit of failure 

detection and isolation. It is designed to distinguish between different types of failures and to esti- 

mate the magnitudes of the failure types [64,74,79,80]. Like the Chi-Square test, the GLR test can 

exploit the residuals of a Kaiman filter as its basis for failure analysis and FDI. The GLR test also 

does a threshold test, however, it compares a generalized likelihood ratio function, l(U, 9) (gener- 

ated from the ratio of the log-likelihood of possible hypotheses analogous to Equation (12)), to a 

predetermined threshold to determine whether or not a failure has occurred. It is derived from the 

GLR equations described below [64,75,79,80]. 
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The hypotheses are established with a Kaiman filter based on H0 (no failure) and matched 

filters based on Hi (a specific failure type added to the system). The ratio of the log-likelihood of 

the two hypotheses will be used to generate a generalized likelihood ratio function, l(U, 9), to be 

defined explicitly later in this section (see Equation (28)), which is used to declare failures via: 

1{U,0)   >   T       =»       FAILURE 

l(ti,0)   <   T       =>       NO FAILURE (17) 

If l(U, 9) is less than the predetermined threshold, T, then H0 is declared true. Similarly, Hi is 

declared true ifl(U, 9) is greater than T. The parameter 9 is the unknown time of the failure. The 

remainder of this section describes the derivation of the GLR algorithm for a single, step failure. 

The following are the model equations upon which a Kaiman filter might be based: 

x(fc) = *(ti,ti_i)x(ti-i) + Gd(ti_i)wd(ti_i) (18) 

with discrete measurements described by: 

z(ti) = H(ti)x(ti)+v(ti) (19) 

The matched filters are designed for failure detection, not state estimation, and are based upon: 

n(ti) = *fe, ii-i)x(ti-i) + Gd(ti-i)*rd(ti-i) (20) 

z(ti) = Hfe)x(*i) + v(*i) + d(ti)n(ti, 9)v (21) 

where 
d(ti)      =   failure vector 
n(ti,9)    =   failure function 
v =   unknown size of the failure 
9 =   unknown time of the failure 

Comparison of Equations (19) and (21) indicate that the matched filter characterizes failures 

by modeling them as variations in the actual measurements beyond the variations caused by the 

dynamics of the system or measurement noise, as indicated by the failure offset term, d(ti)n{th 9)v. 

Although the failure is modeled as a bias on the measurement, this model can also represent changes 

in the states caused by real world anomalies. The failure function term, n(U, 9), indicates the time 
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of the failure onset, 9, within a predetermined sliding "window" of time, and the type of failure 

that has occurred; i.e., ramp offset, step offset, etc. A sliding window of predetermined length is 

used to avoid a growing set of hypotheses and slides in time to cover all the data collected (as the 

window slides in time, the oldest data in the window is discarded as the new data enters the filter, 

maintaining the same total amount of information). The v term is the magnitude of the failure and 

can be estimated by the GLR algorithm and can also be used for corrective feedback. Note that 

after the corrective feedback is utilized, the Kaiman filter would be based on hypothesis Hi, and 

thereafter used as the basis for calculating l(tu 9). Furthermore, the matched filter should assume 

the original no-fail hypothesis, Ho, giving the algorithm the flexibility to recognize that the failed 

condition no longer exists. The column vector, d{U), specifies which of the measurement signals 

has the failure. In general, the likelihood ratio function, l(U, 9), is based on maximum likelihood 

estimates of 9 and v. The goal of the GLR algorithm is to identify the failure signal by recognizing 

variations in the residuals from their normal operating values. 

The Kaiman filter residuals T(U) are defined as 

r(ti)=z(ti)-U(ti)±(tr) (22) 

and the residuals for each hypothesis are described by 

Ho   :   T(ti) = r0(ti) 

Hi    :   r(U) = r°(ti)+s(ti,0)v (23) 

When the system is operating under normal conditions, the Kaiman filter tracks the true states, 

andr°(£j) is zero-mean white Gaussian noise with covariance A(U) = H(ii)P(^)H(i;)T-|-R(t;). 

When a failure occurs, a signal of unknown magnitude, g(^, 9)v, will be present in the residuals. 

This signal is the failure residual offset and found through 

S(U, 9) = H(ti)f (U, 9) + d(ti)n(ti, 0) (24) 
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where the recursive failure quantity f (U, 6) is given by 

f(ti+1,6) = *(ti+uti) [I - K(U) H(ti)} f(ti, 0) - *(ti+1,U)K(ti)d(tiHU,0) (25) 

Note that the GLR algorithm is a function of the overall system behavior (<& and H) and Kaiman 

filter gain K as shown in Equations (24) and (25). If the failure is assumed to occur at the beginning 

of the sliding window discussed earlier, then Equations (24) and (25) can be simplified by setting 

n{ti,0) = 1 for alii,: 

gfe) = H(ii)f (U) + d(ti) (26) 

f(*i+i) = *(**+!,U)[l - K(tiMu)]f(U) - *fe+i,<i)K(ti)d(ti) (27) 

The primary reason for this simplification is to reduce the computational burden associated with 

calculating several GLRs based on different values of 9. However, the consequence of this simpli- 

fication is a delay in detecting the failure caused by waiting for the failure to reach the beginning of 

the sliding window. The Kaiman filter outputs combined with the matched filter model determines 

the magnitude of the generalized likelihood ratio function defined as 

'^ = W$ (28) 

where 

s{u,e)  = Xyfo'*)A"1to>rfo> (29) 

is essentially the correlation of the observed residuals with the abrupt change signatures given by 

g(ti, 6) for the different hypothesized types and times of occurrence. Furthermore, 
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is interpreted as the amount of information present in z(ii),..., z(ij) when an abrupt change occurs 

at time 0. In both Equations (29) and (30), A(tj) is given by 

A(tj) = H(ti)P(tj)HT(*i) + Ufa) 

and the maximum likelihood estimate (MLE) of the unknown magnitude of the failure, v, is found 

by 

The residual covariance A(tj) and the residuals are combined in Equations (24) and (25) or Equa- 

tions (26) and (27) to form a linear combination of the residuals Sfa, 6) and a deterministic value 

C(U, 6) defined in Equations (29) and (30). Finally, the decision rule given by Equation (17) is used 

to determine the system's failure condition. 

Thus, the GLR algorithm involves a single Kaiman filter, a matched filter, and the likelihood 

calculation. It determines failures by observing changes in the filter residuals and calculates the 

likelihood of each possible event by correlating the residuals with the corresponding failure signa- 

ture. Figure 9 depicts an example of a multiple GLR test with a bank of matched filters designed for 

the no failure and step failure modes. The Kaiman filter provides its residuals to the bank, wherein 

each filter is tuned to a certain type of failure mode. Each matched filter's output is tested against 

a hypothesis, Hfc, corresponding to each hypothesized failure mode. An MLE is computed for each 

specific hypothesis. Each MLE is fed into the common test logic algorithm, similar to Equation 

(17), to determine the correct hypothesis. 

One of the key benefits of the GLR test is the need for only one Kaiman Filter Additionally, 

only one matched filter is required for each failure type, since the algorithm estimates unknown 

variables, such as the magnitude of the failure type, in the FDI process. This is a great computational 

load benefit, especially in comparison to other multiple model techniques.    Even though GLR has 
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been successfully applied to a wide variety of FDI applications [64,74,75,79,80], there are some 

limitations which include: 

1. It has difficulty handling any parametric changes which may occur in the model due to changes 

in the system's operating condition. Thus, it is difficult for the GLR to model the dynamic nature 

of a system and its sensors to represent their behavior in the presence of failures. Therefore, 

typical GLR tests lack robustness since they are unable to detect parametric changes while 

looking for additive changes. 

2. While detection of abrupt changes is a GLR's strength, detection of ramp failures is difficult. 

An unacceptable time delay may occur since the ramp-corrupted signal is slowly moving away 

from the desired signal and takes more time to cross the failure threshold [75]; thus, depending 
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on the length of the sliding window, the GLR test may fail to detect the failure. An additional 

drawback is that 'windowing' the estimate of 0 leads to a direct reduction in the accuracy of 

the estimate of the size of the failure, v. 

3. Windowing may also cause an unacceptable delay in the identification of failures. 

White [77,78] accomplished an indirect comparison of conventional MMAE-based techniques with 

a GLR/chi-square based technique applied to an FDI study performed by this author [75] on a 

GPS/INS based system. The following observations were made: 

1. Both methods were effective at detecting interference failures (represented by increased 

measurement noise variances), but the GLR/chi-square based scheme suffered from much larger 

time delays as compared to the MMAE. 

2. The GLR/chi-square scheme also experienced large time delays when returning to a nominal 

no-fail declaration after receiving a large amount of interference, as compared to the MMAE. 

3. Additionally, the GLR/chi-square algorithm suffered from its inability to detect/identify ramp 

failures adequately. 

In summary, the GLR/chi-square failure testing scheme experienced unacceptable time delays com- 

pared to the MMAE-based techniques, especially in the face of bias-like failures. 

2.1.5   Distributed Kaiman Filtering (DKF) 

This section parallels the discussion first presented by Miller [53]. An alternative to the stand- 

alone or "centralized" Kaiman filter is the distributed Kaiman filter (DKF). The DKF developed by 

Carlson [8-10,38], also called the federated filter, is another parallel structure like MMAE. How- 

ever, unlike the MMAE, "local" filters in the DKF process partitions of the available measurement 

vector (whereas the "elemental" filters in the MMAE each process the entire measurement vector) 
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and then the information in the "local" filters is fused together in a "master" filter. DKF is based 

on simple and effective "information-sharing" methodology. The basic procedure involved in this 

information-sharing is [38] 

1. Divide the total system information among several component filters or modules ("local" 

filters). 

2. Perform local time propagation and measurement update processing (adding local sensor 

information as available). 

3. Recombine the updated local information into a new total sum. 

DKF has potential benefits gained through its modular structure, i.e., each component filter 

is managed and maintained independent of the others. DKF is useful in sensor failure scenarios 

because only the associated "local" filter might get corrupted by an undetected sensor failure, rather 

than all variables being corrupted as in a single centralized filter approach. However, DKF assumes 

statistical independence between the modules which is often impossible to validate. 

2.1.6  Multiple Model Adaptive Estimation (MMAE) 

The final parameter estimate technique for discussion is the use of multiple model adaptive 

estimation to represent a wide range of parameter variations within the system model. MMAE, 

like chi-square, SPRT, and GLR, exploits Kaiman filter residual information, but it does so using 

multiple Kaiman filters, each based on a specific hypothesis. The basic structure of an MMAE is 

shown in Figure 10 and the detailed equations governing this algorithm will be presented in Section 

2.2. The major strength of MMAE is its ability to reconfigure rapidly in the presence of failures 

and thus provide accurate state estimates. However, an inherent trade-off exists between accurate 

parameter estimation or FDI, and accurate state estimation.    Specifically, if one tunes the MMAE 
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bank for optimal parameter estimation, then these same tuning values will often result in less than 

optimal state estimation. Many researchers have focused on exploiting the capability of MMAE to 

provide state or parameter estimation separately as well as attempting to blend them ideally [1,2, 

5,14,15,17-22,26,27,33-36,42,44-48,50-52,55,66-72]. By running multiple filters in parallel, 

residual information at each update is used to identify the system failure status and to reconfigure 

the system rapidly to failures. Unlike the GLR algorithm which implements only a single Kaiman 

filter and multiple matched filters, the MMAE employs multiple Kaiman filters to model the dy- 

namic nature of the system (and its sensors) to represent performance in the presence of specific 

hypothesized failure conditions. 
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A logical choice for one is the no-fail condition, with the remainder of the filter bank com- 

prised of filters based on hypothesized candidate failure types. The number of elemental filters will 

affect the granularity of the parameter estimation and ultimately the accuracy of the state estima- 

tion. Section 2.2 will address the various methods used to enhance MMAE performance, including 

the Moving-Bank MMAE, which is the focus of this research. 

2.2 MMAE Review 

This section presents the fundamentals of the MMAE algorithm in detail, along with various 

techniques that have been researched to enhance the performance of the MMAE concept. The focus 

will be on the Moving-Bank MMAE with some background presented on hierarchical structures 

and inter-residual distance feedback. 

The following assumptions apply to the MMAE algorithm: 

• The sampled-data system is adequately represented by a linear stochastic state differential model 
for a given parameter vector value, resulting in Gaussian probability density functions, and can be 
described equivalently by linear stochastic difference equations [45,47]. If nonlinear models are 
required to describe the system adequately, then extended Kaiman filters would replace the linear 
Kaiman filters in the MMAE structure and the associated probability density functions would 
be approximated as Gaussian. This simplifying assumption enables nonlinear modeling and 
approximate nonlinear filtering to fit into the context of the MMAE structure while recognizing 
the potential suboptimality in assuming Gaussian densities. 

• The uncertain parameters to be estimated affect the system matrices (in the linear case, or 
structure-defining vector functions in the nonlinear case) or the statistics of the noises entering 
the system. This assumption covers a very broad class of problems since only the choice of 
measurement sources and choice of state variables are considered fixed. 

• MMAE theory fundamentally assumes a discrete-valued parameter vector. In actuality, a 
parameter value typically varies over a continuous range of parameter space. Thus, parameter 
values will have to be discretized to some level of resolution for feasible implementation. Clearly, 
poor choices in discrete values for a continuous parameter would result in poor modeling by the 
MMAE elemental filters and thus poor estimation from the entire MMAE algorithm itself. This 
results because there might not be an elemental filter within the MMAE bank that has a good 
model of the system's current behavior The choice of discretization is a major design issue being 
addressed by this research. 
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2.2.1   MMAE Fundamentals 

The theory presented in this section will follow the development by Maybeck [45,47] closely. 

Let a denote the p-dimensional vector of unknown parameters in the system model and assume that, 

in general, the range of a is continuous. In most physically motivated problems, there is a finite 

range of reasonable parameter values, but within that finite range there are an uncountably infinite 

number of discrete point values for the parameter: A separate elemental filter within the MMAE 

will be associated with each discrete parameter value hypothesized during modeling. To make the 

number of filters in the bank finite and thus keep the problem tractable, the continuous range of a 

is discretized into J representative values. More explicitly, let the model corresponding to a, (for 

j = 1,2,..., J) be described by an "equivalent discrete-time model" for a continuous-time system 

with sampled-data measurements. This is similar to the development shown in Section 2.1.2 with 

the jth filter model given by 

xj(ti) = *j(ti, U-i)xj(U-i) + Bdj(ti_i)u(ti_i) + Gdi(ti_i)wdj(ti_i) (32) 

z(ti) = Ujiti^jiU) + vjfc) (33) 

E [wöjiU-i^IjiU-i)} = Qdift-i) (34) 

E{vj(U)^j(U)} = -Rj(ti) (35) 

S{wdi(ti_i)vj(tfc)} = 0       Vi.fc (36) 

Note that the parameter can affect $, Bd, Gd, H, Qd and R, as indicated by the subscript/' on these 

matrices. Based on this model, the Kaiman filter propagation and update equations are given by 

Equations (3) - (8) with the addition of the subscript j on all variables save z and u. More explicitly, 

the propagation equations are 

*ifö") = *i(*i. *i-i)*it*£i) + Bdj(U-iMU-i) (37) 

Pi(V) = *i(*i>*«-i)Pi(£i)*J(*i.*i-i) + G<u(ti-i)Qdj(U-i)Gl(ti-i) (38) 
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and the update equations are 

AjiU) = H^P^rjHjfe) + Rj(U) (39) 

x 

Kjiu) = Pj(t;)nj (t^Aj^u) (40) 

tit) = *j(t7) + Kj(U)fo - HjfäMtT)] (41) 

*M) = Pi(*D - K^Uj^Pjitr) (42) 

The hypothesis conditional probability, Pj{U), is defined as the probability that a assumes the dis- 

crete value a,-, conditioned on the observed measurement history to time U, 

Pj(ti) = Prob[a = a.j\Z(ti) = Z*] (43) 

Then it can be shown [2,29,37,45] that pj (U) can be evaluated recursively for all j via the iteration 

/zfc)|a,Z(*i-1)(
zi|aj»Zi-l)Pj(*i-l) 

Efc=l /z(tO|a,Z(t;-i)(zilafc> Zi-l)Pk(ti~l) 
p.U.)     = ■/g(*i)|a,Z(ti-1)Vat|°J»^-i^JV-t-i/ ^ 

in terms of the previous values of pi(ti-i),... ,ps{U-\) and the conditional densities for the current 

measurement z(ti) to be defined explicitly in Equations (47) - (49). 

Notationally, the measurement history Z(U) is made up of partitions z(*i),... ,z(ij) that are 

the measurement vectors available at the sample times ti,...,U; similarly, the realization Z* of the 

measurement history vector has partitions zi,..., z*. Furthermore, the Bayesian minimum mean 

square error (MMSE) estimate of the state is the probability-weighted average 

j 

±(t+)   =   E{x(ti)\Z(ti) = Zi} = '£kj(ti)pj(ti) (45) 
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where xJ(ti
l") is the state estimate generated by a Kaiman filter based on the assumption that the 

parameter vector equals a.,. 

Thus, the MMAE algorithm is composed of a bank of J separate Kaiman filters, each based 

on a particular value ai,..., aj of the parameter vector, as shown earlier in Figure 10. When the 

measurement z* becomes available at U, the residuals ri (ti),..., r j (U) are generated in the J filters, 

as shown in Equation (46): 

rj(ti)=zi-Hj(ti)±j(tr) (46) 

and used to compute p\ (U),..., pj (U) via Equation (44). Each numerator density function in Equa- 

tion (44) is given by 

/.(tOMfe-ofctla/. Zi_i) = ^exp{-} (47) 

where 

ßj = (27r)W2|Aj-(^)|V2 (48) 

and the expression in the brackets of Equation (47) is 

{■} = {-\rj(U)Aj1(U)ri(U)^ (49) 

and where m is the measurement vector's dimension and Aj(ti) is the residual covariance matrix at 

time U calculated in the jth Kaiman filter, as given by Equation (39). Note that the term ßi should 

not be confused with false alarm rates often represented as ß. The denominator in Equation (44) is 

simply the sum of all the computed numerator terms and thus is the scale factor required to ensure 

that all pj(U) values sum to one. 

One expects the residuals of the Kaiman filter based on the best model to have the mean- 

squared value most in consonance with its own computed Aj(U), whereas "mismatched" filters 

have larger residuals than anticipated through Aj(U). Therefore, the filter based on the most cor- 

rect assumed parameter value receives the most probability weighting. However, the performance 

30 



of the algorithm depends on there being significant differences in the characteristics of residuals 

in "correct" versus "mismatched" filters. Each filter should be tuned for best performance when 

the "true" values of the unknown parameters are identical to its assumed value for these parame- 

ters. One should specifically avoid the conservative philosophy of adding considerable dynamics 

pseudonoise, often used to open the bandwidth of a single Kaiman filter to guard against divergence, 

because this tends to mask the differences between good and bad models. However, if this approach 

to tuning causes one of the filters to diverge (which is indicated by very large residuals), then it can 

be restarted with the current state estimate from the MMAE as computed from the nondivergent 

filters. 

The Bayesian method was shown earlier to produce a state estimate (the conditional mean of 

x) given by Equation (45) which will be denoted as 

XMMAE(^)   =   YiM^PÄU) (50) 
J=I 

The corresponding parameter estimate (the conditional mean of a), can be generated as 

j 

äMMAE(^i)    =    ^a-jPj-(ti) (51) 

Alternatively, the maximum a posteriori (MAP) method chooses the state estimate associated with 

the model having the highest probability which is given by 

XMAP-MMAE(*i") = Xj(tt)   for j such that pj(U) = max[pfc(i;)] (52) 

and similarly for äMAP-MMAE(<»)- 
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2.2.2   Simple Performance Enhancements 

Several ad hoc techniques have been researched [ 14,15,42,45,47,48,50-52,55,70,71 ] with 

the intent of enhancing the performance of the standard MMAE algorithm presented in the previous 

section. This section will briefly describe the following techniques in order 

1. Kaiman Filter Tuning 

2. ß Dominance Compensation 

3. Scalar Penalty Modification 

4. Lower Bounding Conditional Probabilities 

5. Probability Smoothing 

6. Scalar Residual Monitoring 

7. Increased Residual Propagation 

8. Markov Process Modeling of Hypothesis Conditional Probabilities 

9. Interacting Multiple Model Form of MMAE 

10. Dithering 

1. Kaiman filter tuning refers to modifying the covariance of the process noise, Qdj, or the 

measurement noise, R,, of the elemental filters. As mentioned in Section 2.2.1, the addition of 

considerable process pseudonoise can deteriorate the detection capability of the algorithm and will 

often result in detection delays or missed alarms. However, appropriate tuning of these noise levels 

is often effective in reducing false alarms and/or missed alarms [14,15,22,42,45,47]. Although 

this technique is primarily ad hoc since exact tuning values are not determined analytically, phys- 
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ical insights into the problem will often assist in determining the order of magnitude of the noise 

covariances. Specifically, one seeks tuning conditions such that rjAj1rj is approximately equal to 

m (the measurement dimension) when the hypothesized parameter value a^ is a good match to the 

true parameter value, and significantly larger than m when the assumed parameter value is a poor 

match to truth. 

2. Beta dominance is the tendency of the probability evaluator to calculate probabilities in- 

correctly because of the impact of the ß5 term in Equation (48). If all the exponential terms, {•}, 

in Equation (49) were approximately the same size for all the elemental filters, one would desire 

all elemental filters to be deemed equally adequate. However, Equations (44) and (49) would put 

the highest probability on the elemental filters with the smallest |A_,-| value. This is inappropriate 

weighting since the size of | Aj\ has nothing to do with the correctness of the failure detection. A 

typical representation of a sensor failure is to zero out the row of H, corresponding to the failed sen- 

sor All other things being equal, the filters assuming this type of failure will tend to have smaller 

|Aj| values, and thus an MMAE used for sensor/actuator failure detection will be prone to false 

alarms on sensor failures. Two methods have been used to remove the ß dominance effect [21,47, 

48,50-52,70,71]. The first uses scalar residual monitoring, to be discussed presently. A second 

technique simply removes the ßj term in the conditional density resulting in a modified "density" 

/.(tOI-.zfo-ofck.Zi-i)   =   expj-irJ^AT1^)^)! (53) 

The algorithm functions properly with the ßj term removed because the denominator in Equation 

(44) is the sum of all possible numerators and will normalize the probabilities. Specifically, the 
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probabilities, pj, will still sum to one even if the area under each of the modified "densities" is no 

longer unity. This research does not use this technique. 

3. Increasing the magnitude of the negative scalar value of -\ in the {•} term in Equation (49) 

can decrease the probability convergence time for the MMAE. This technique is referred to as a 

scalar penalty increase since increasing the magnitude of the -\ term drives probabilities associated 

with large residuals to zero faster. Ideally, this should result in a faster convergence of the conditional 

probabilities; however, increasing the scalar penalty also increases fluctuations in the probabilities 

and thus the false alarm rate [48]. The "best" value of the scalar penalty is empirically determined 

through simulations. This research does not use this technique. 

4. Placing a lower bound on the conditional probabilities, pj, has been used to prevent filter 

lock-out and delays in failure identification [14,15,21,42,45,47,48,50-52,70,71]. Due to the 

recursive nature of the probability calculation, Equation (44), if a probability is ever allowed to 

become zero, it will remain at zero thereafter Likewise, if a failure occurred and the probability 

associated with the filter matching this failure hypothesis were allowed to get too small, it may take 

several iterations for this probability to increase and properly declare the failure. To prevent this from 

occurring, the probabilities are artificially bounded above zero to an empirically determined value 

and rescaled to ensure that they still sum to one. Alternatively, the IMM approach [3,5] (and some 

others) discussed presently removes the lower bounding of the conditional probabilities and replaces 

such lower bounding with a Markov model for the time-propagation of the pj values. However, this 

requires knowledge of the J-by-J probability state transition matrix for mat Markov process model. 

This assumption will be discussed further under Markov Process Modeling that follows. Although 

lower bounding the conditional probabilities is an ad hoc technique, it accomplishes analogous 

behavior in the computed probabilities without detailed knowledge of the entire probability state 

transition matrix. In fact, the probability state transition matrix is set equal to the identity matrix in 
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the case of using lower bounds, indicating that the parameters are modeled essentially as constants 

over time. This research does apply lower bounding of the probabilities. 

5. Immediately following a change in the system operating mode, the probabilities will go 

through a transient period before converging to the correct solution. Probability smoothing is used 

to minimize the momentary false alarms based on these transients [21,48,51,52,70,71 ]. The prob- 

abilities are smoothed over a moving window, i.e., averaged over a number of data samples. The 

size of the window is empirically chosen, with a large window size causing detection delays and a 

small window size allowing more false alarms. This research does not use this technique. 

6. Scalar residual monitoring is used to minimize false alarms for sensor type failures and 

involves component terms in the summation for the likelihood quotient defined by the following 

quadratic 

Lj(ti) = r](ti)Aj1(ti)rj(ti) (54) 

This term comes directly from Equation (49) and, based on discussions up to this point, it is clear 

that the useful information pertaining to the "correctness" of the parameter values is captured by 

this quadratic [45]. Inspection of Equations (44), (49) and (54) reveals that the probability calcula- 

tions are dependent on the magnitude of the entire quadratic form. However, given a sensor failure 

modeled by zeroing out the kth row of H corresponding to the failed sensor, ike predominant in- 

dicator ofthat failure ought to be a large value of the single scalar term in the likelihood quotient 

associated with the kth scalar residual [50], namely: 

^ - H) (55) 
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in any of the elemental filters (such as the H0-based filter) except for the one specifically designed 

to expect such a failure. The term additional voter implies that scalar residual monitoring would 

be used in conjunction with the standard conditional probability hypothesis testing. The ad hoc 

nature of scalar residual monitoring is two-fold. First, an empirically chosen threshold is compared 

to the scalar likelihood quotient given by Equation (55). Second, the amount of weight given to 

the additional vote via scalar residual monitoring versus the standard MMAE hypothesis test is ad 

hoc. This research does not use this technique, however, the information contained in the likelihood 

quotient, Equation (54), will be exploited extensively. 

7. Increased residual propagation is another method used to reduce the decision convergence 

time for the MMAE [21,48]. The idea is to propagate the Kaiman filter state estimates, without 

updating, for a few sample periods while still monitoring the residuals. This allows the residuals 

in the elemental filters based on incorrect hypotheses or assumed parameter values, to grow much 

larger since the usual measurement updates are no longer correcting the state estimates toward the 

actual measurements; such corrections tend to mask the impact of an incorrect hypothesis. The 

number of propagations allowed before an update must be determined empirically. The risk involved 

in implementing this technique is an increase in the fluctuations of the conditional probabilities and 

thus false alarms [21,48]. Clearly, this would also degrade the precision of the state estimates. This 

research does not use this technique. 

8. If the parameter vector a can be shown to be a Markov process, then the conditional proba- 

bilities are propagated based on the Markov process development shown in [5,45,55]. Of particular 

interest is the probability state transition matrix T(U, i*_i) which allows propagation of the condi- 

tional probabilities in place of Equation (44). Let the elements of the J-dimensional vector p(ti) be 

the probabilities pjfe) defined in Equation (43); then the following is the Markov model for prop- 
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agation: 

p(ti) = T(«i,«i_1)p(ti_i) (56) 

The obvious problem that arises from this approach is the need to determine all the entries of the 

probability state transition matrix, which often requires considerable physical insight or some degree 

of arbitrary assignment. The benefits of this approach are the ability to implement the IMM approach 

[3,5] discussed presently and the avoidance of lower bounding the conditional probabilities with ad 

hoc values to handle time-varying p/s. The predictive nature obtained by using Equation (56) can 

overcome the previous problem of lock-out, i.e., it will change a pj = 0 to some small value prior to 

its need to grow large and force a change in the choice of hypothesis, if T(t», ij_i) is nondiagonal. 

Typically, choosing a good lower bound for the p/s is much easier than fully defining T(ii; U-i) 

with any level of certainty. This research does not use this technique. 

9. A technique called Interacting Multiple Model (IMM) performs a restart of all the filters 

in the bank after every sample period [3,5]. Given that the probability state transition matrix in 

the standard MMAE structure equals identity, the theory in [3,5] dictates using XMMAE^J
1
") from 

Equation (50) or some other appropriate function of pj and x, values from the current or most 

recent two sample periods to restart the filters. The IMM approach is intended to improve state 

estimation but will often degrade FDI performance since subtle failures will often go undetected. 

This results from the filters tracking the subtle failure and the intermixing of state estimates in all the 

elemental filters. In contrast, if the filters are not reset at each sample time, then the subtle failure 

will eventually cause the conditional probability, pj, associated with this type of failure to increase 

and thus be detected. This research does not use this technique; however, initialization of filters 

with newly declared parameter values will be used as described in Section 3.1.5.2. 

10. Dither, defined as the purposeful introduction of excitation into the system, is often neces- 

sary for any FDI algorithm, including MMAE, to detect and isolate failures adequately. The primary 
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reason is the need to excite the system away from a quiescent state that does not properly depict the 

true failure status. Otherwise, the residuals associated with the elemental filters that poorly match 

the true system will be indistinguishable from the residuals for the filters that correctly match truth. 

In some cases, the system will undergo sufficient dynamic maneuvers to induce the needed stimuli, 

i.e., several high-g turns for an aircraft. However, autonomous dithering will tend to enhance FDI 

in benign conditions, i.e., straight and level flight. A number of dither signals have been evaluated, 

including white noise, square waves, triangle waves, combinations of these forms, and sine waves 

[51,52,70,71] with satisfactory results. The white noise dither (which is in reality only white over 

the bandpass of the system) provides excitation at all frequencies, whereas the periodic dithers must 

be implemented at carefully chosen frequencies and phasings, or else sweep across the frequency 

range of interest and dwell at discrete values. The periodic dither has the advantage that die residu- 

als can be monitored not just for magnitude but also for frequency effects corresponding to the input 

dither Specifically, the residuals associated with the wrong hypothesis will display the periodic sig- 

nal at the known dither frequency, while the residuals for the correct hypothesis will be zero-mean 

white Gaussian process of covariance Aj(U), since the effect of purposeful controls onz(ij) will 

be exactly compensated by the [H., (Ufa (*r)] term in Equation (46) if a,- corresponds to the cor- 

rect parameter value. A negative side effect of autonomous dithering is constructive interference, 

which refers to the interaction between multiple dither signals due to coupling inherent in the system 

model. This coupling has been shown by [70,71] to result potentially in a lower frequency dither 

than desired and thus a degradation of the frequency monitoring used for FDI. Simple variations 

in frequency and phase between channels of the system will often prevent this type of interference. 

Careful consideration must be given to keeping dither signals subliminal so as not to introduce un- 

wanted dynamics into the system, i.e., avoid fatiguing the pilot of an aircraft with high-g pulsing. 

This research does not use this technique. 
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2.2J  Moving-Bank MMAE 

The moving-bank MMAE was motivated in Chapter 1 with brief descriptions of moving, ex- 

panding and contracting the bank. Additional research has focused on methods to discretize the 

parameter space in terms of choosing the best filter-assumed parameter values within the MMAE, 

as well as on decision logics to control the bank motion. Further details regarding these topics are 

presented here. 

2.2.3.1  Decision Logics 

The following section parallels the discussion first presented by Maybeck [47]. Five decision 

logics have been investigated by Maybeck and others [18-20,45,47,66,67] with the intention of 

keeping the estimate of the parameter in the bounds of the bank and "optimally" placed. They are: 

1. Residual Monitoring 

2. Parameter Position Estimate Monitoring 

3. Parameter Position and ""Velocity" Estimate Monitoring 

4. Probability Monitoring 

5. Parameter Estimation Error Covariance Monitoring 

A brief summary of each follows. 

Residual Monitoring. Recall the likelihood quotient given by Equation (54): 

Lj(ti) = rJ(ti)Aj1(ti)rj(ti) 

In the case of scalar measurements, this is the current residual squared, divided by the filter-computed 

variance for the residual. When the true parameter value does not lie in the current moving-bank re- 

gion, all J likelihood quotients can be expected to exceed a threshold level TL, the numerical value 

of which is set in an ad hoc manner during performance evaluations. Thus, a possible detection 
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logic would indicate that the bank should be moved and/or expanded at time U if 

mm[Li(*i), L2(ti),..., LjiU)} > TL (57) 

Moreover, the elemental filter based on a^ nearest to the true parameter value should have the small- 

est likelihood quotient, thereby giving an indication of the direction to move the bank Tests anal- 

ogous to Equation (57) can be applied to a subset of the current bank members, as those along one 

edge of a rectangular bank in a 2-dimensional parameter space, to indicate that the subset is not near 

the true parameter value. Although this logic would respond effectively to a real need to move or 

expand the bank, it would also be prone to false alarms induced by single laige samples of measure- 

ment noise, since it is based on the single residual vector at time U. 

Parameter Position Estimate Monitoring. Another means of keeping the true parameter value 

in the region bracketed by the moving bank is to keep the bank centered (as closely as possible in 

view of the discrete values that a is allowed to assume) on the current estimate of the parameter. 

This estimate was shown in Equation (51) as 

&(U)   =   E{a\Z(ti) = Zi} = Y^SLjPj(ti) (58) 

If the distance from the parameter value associated with the center of the bank to a(i*) becomes 

larger than some chosen threshold, a move of the bank in that direction is indicated. Since B.{U) 

depends on a history of measurements rather than just the single current measurement, it is less 

prone to the false alarms discussed in the previous method. 

Parameter Position and "Mocity" Estimate Monitoring. If the true parameters are slowly 

varying, past values of a(i;) can be used to generate an estimate of parameter "velocity". This, along 

with the current position estimate ä(^), can be used to compute a predicted parameter position, one 
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sample period into the future. If the distance between the bank center and that projection exceeds 

some selected threshold, the bank can be moved in anticipation of the true parameter movement. 

This approach introduces lead to the moving-bank logic, but also a higher level of uncertainty and 

erratic bank movement. 

Probability Monitoring. The conditional hypothesis probabilities, pj, are another indication of 

the correctness of the parameter values a, assumed by the elemental filters of the current bank. If 

any of these rise above a chosen threshold level, the bank can be moved in the direction of the a, 

associated with the highest pj. In this scheme, the bank seeks to center itself on the elemental filter 

with the highest conditional probability weighting. Again, since pj depends on a history of mea- 

surements, this method should not be as sensitive to single bad samples of measurement corruption 

as is the case under residual monitoring. 

Parameter Estimation Error Covariance Monitoring. This concept is discussed last because 

it has a somewhat different purpose than deciding when and in what direction to move the bank. It 

is also possible to change the size of the bank by altering the discretization level of the parameter 

space, as shown in Figure 5 on page 7. For example, initial acquisition can be enhanced by choosing 

the values ai,..., aj so that they coarsely encompass all possible parameter values, rather than use 

a small bank and force it to seek a true parameter value that may well be outside the region of its 

assumed parameter values. Then, once a "good" parameter estimate has been achieved with this 

coarse discretization, the size of the bank can be contracted and the smaller bank centered on that 

good value. To help make such a contraction decision, it would be useful to monitor the parameter 

estimation error conditional covariance, computable [45] as 
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Pafe)    =    E{[a-k(ti)][SL-k(ti)]
T\Z(ti) = Zi} 

J 

=   ^-ä^fo-ä^p-p^) (59) 
3=1 

When an appropriately chosen scalar function (norm) of this matrix falls below a selected threshold, 

the bank can be contracted about the parameter estimate. One such norm is the weighted sum of 

the diagonal terms of Pa for a moving bank constrained to be a square region in a two-dimensional 

parameter space [47]. In general, one could use different discretization coarseness decisions in 

individual directions of the parameter space, allowing rectangular banks as well as squares. 

An indication of the need to expand the size of the bank can be obtained from residual monitor- 

ing as before. If all likelihood quotients from Equation (54) are large and close in magnitude, then 

none of the current elemental filters appear to have a good model (hypothesized parameter value) 

and no clear indication of the true parameter's value is provided, and it is more appropriate to ex- 

pand the bank than to attempt to move it. The error covariance could then be monitored for making 

the decision to return the bank to a smaller size. Since Equation (59) depends on the current choice 

of a,- values, this error covariance is not a reliable indicator for the decision to expand; the Pa(*i) 

so computed is artificially bounded from above by the current size of the bank. 

Regardless of which technique listed above is used, when the bank is either moved or expanded, 

any filter corresponding to newly declared a,- locations must be initialized with ±j(ti), Pj(ti), and 

Pj(ti) values. A reasonable choice for ±j(U) is the current moving-bank blended estimate ±(tf). 

For Pj(ti), the total probability weight of one minus the sum of the unreset pjfa) values is divided 

among the new filters in the bank [23,49]. Although this can be apportioned equally, better perfor- 

mance results when it is divided based on the relative correctness of the new filters being added [23, 
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49]. This correctness is determined from Equation (49) for each new filter and is used to divide the 

probability proportionately, i.e., the most correct filters will have a small value for the likelihood 

quotient given by (54) and thus receive the greatest probability allocated to the new filters. 

Before a move or expansion, it may be desirable to warm up the new filters before bringing 

them on line, allowing initial transients in XJ (U) and Pj (U) to die out. To accomplish this, the move 

threshold is left intact, and an additional, tighter warm-up threshold is used to indicate whether or 

not to warm up any filters. Until the original move threshold is surpassed, these new elemental 

filters do not affect the adaptive filter output. 

2.2.3.2 Sheldon Discretization 

This section represents a joint effort with Miller [53]. It is important to realize that the level 

of discretization of a continuous parameter space directly impacts (1) the ability of the filter bank 

to "surround" the parameter and (2) the average and maximum distance from the true parameter 

to the parameter value assumed by one of the elemental filters. It is critical that the parameter lie 

within the bank's range of coverage for adequate parameter estimation, and it is desirable to have it 

close to one of the elemental filters for improved estimation. One ad hoc method for choosing the 

coarseness of discretization is to conduct a performance analysis of a single Kaiman filter against a 

truth model and to vary one parameter of the truth model in one direction at a time, until the filter, 

based on the nominal parameter point, yields unacceptable levels of degraded performance [18-20, 

45,67-69]. Sheldon [68,69] instead chose optimally discretized parameters by minimizing one of 

three cost functions, depending on design goals of good state estimation, parameter estimation, or 

state control. Consider the first case, in which the cost functional, C, represents the average value 

of the mean squared estimation error, where the average is taken as the true parameter ranges over 
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the entire admissible parameter set: 

_    JAg{[x(t)-x(0]^W[x(t)-x(t)]}da 
O    —     -z—  (pv) 

Note that 

I    da.   = ... /    da\da,2...dav 
JA* JAp    JA2 JAI 

where p is the number of scalar parameters (the dimension of a), and where W is a weighting ma- 

trix chosen by the designer to place emphasis on certain states. Also, define A* as the admissible 

set of parameter values, where each parameter varies over a continuous bounded range. A five-step 

algorithm was developed by Sheldon which allows the designer to approximate and minimize the 

cost functional numerically [68,69]. This procedure is accomplished prior to the real-time imple- 

mentation of the (fixed-bank or moving-bank) MMAE and provides the designer with the optimal 

choice for the discretization level. The basic question being addressed is, "If allowed J discretized 

points (where J is preselected) in the parameter space, where should they be placed in order to yield 

optimal MMAE performance relative to the chosen cost function C?" In general, the three cost 

functions described above will yield different discretizations; so the designer must determine which 

cost criterion is most pertinent to the problem at hand. 

With the focus of this research on parameter estimation, the cost functional for parameter esti- 

mation [68,69], 

c = jA„E{nt)-m?™w)-m\}d* (61) 

is required. The following summary is taken from Sheldon's dissertation [68] and highlights his 

assumptions, concepts, and presents his design algorithm. Some assumptions, besides those stated 
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earlier for the MMAE development, are required to bound the problem and form the basis for the 

mathematical development: 

1. The structure of the plant is known except for an p-vector of parameters, which is assumed to 

be a member of an infinite set A*, which is Lebesque measurable. 

2. The set, A*,is bounded and connected so that it makes sense to integrate over the set 

numerically, in order to find the mean square error 

3. There are a finite number of filters available for the estimation. 

4. Pseudo -probabilities are calculated by Equation (44), 

.(+■) - /z(*i)|a,Z(ti-1)(
zilaj»Zi-l)Pj(^-l) 

Ylk=l /z(ti)|a,Z(ti_1)(
zi|afc> Zi-l)pfc(ii-l) 

for j = 1,2,..., J. The probabilities are referred to as pseudo-probabilities since it is impossible 

to have an infinite bank of filters, hence the MMAE algorithm might be calculating the 

probability that each filter is the correct one, when in fact none of them are. 

5. The Bayesian estimate formulations in Equations (50) and (51), are used to calculate the 

estimates: 

j 

XMMAE(^)     =     Yl^i^Pj^i) 
3=1 

J 
aMMAE(*i)    =    ^a-jPjiU) 

6. The MMAE system converges to the model closest, in the "Baram sense" (in the information 
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measure of Baram [4]), to the true parameter value with probability one. 

7. The development assumes steady state, constant-gain filters, i.e., the K/s do not vary with 

time. However, Sheldon points out that the filters in the MMAE do not have to be steady state 

Kaiman filters. But for this development to apply, the filters must have the same structure as a 

Kaiman filter Therefore, any other method to calculate a constant gain that produces a stable 

estimator may be used [68,69]. For example, the problem researched in Chapter 4 is an unstable, 

nonlinear, integrated GPS/INS problem using extended Kaiman filters. A nominal trajectory 

point is chosen as the basis for defining the system matrices for determining a "-pseudo "- 

constant gain value. Once the gains are calculated, the Sheldon algorithm may be applied 

using a finite horizon assumption to generate an approximate solution, since the system never 

achieves steady state. The finite horizon is chosen by the designer and based on what finite 

period of time is of physical concern for the problem. Specifically, the finite horizon is given 

by the number of sample periods into the future that should be used to propagate the iterative 

relationship given by Equation (68). 

Given these assumptions, the goal is to minimize the cost functional 

C   =    JA. £«*(*) ~ a(t)]TW[a(t) - a(t)]}da (fi2) 

Since the admissible parameter set is assumed constant for a given problem, only the numerator of 

Equation (62), 

/   £{[a(*)-ä(0]TW[a(i)-a(t)]}da   =    /   tr (WE{[a(t) - ä(t)][a(t)-k(t)]T}) da. 
JA« JA« 
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needs to be minimized. This simply entails a sensitivity analysis into the effects of parameter vari- 

ations in the elemental filters of the MMAE. 

The error autocorrelation equations are derived from the standard Kaiman filter equations (32) 

and (33) based on the design model hypothesizing the parameter value a,, 

Xj(ti) = &j(U, *i-i)xj(ti-i) + Gdj(*i-i)wdj(ti_i) (63) 

x(U) = H^xj-fe) + Vj(U) (64) 

which varies from the actual truth system based on the true parameter at: 

xt(ti) = *t(*i, U-i)xt(U-i) + Gdt(ti_i)w,tt(ti-i) (65) 

ztfe) = Htftjxtfe) + vtft) (66) 

Given these standard equations, the estimation error vector is given by 

*i(*r)=*i(*r)-T*(*r) (67) 

where T denotes a transformation matrix from the true state space to the model state space, which 

allows reduced order filter designs. 

The appropriate MMAE filter selections are made based on [4] using the one-step prediction 

model of the state estimate ±j (t J"). Sheldon derived the one-step prediction model from the standard 

Kaiman filter equations in terms of the estimation error vector x, (t^) to produce the iterative error 

autocorrelation matrix equation (the time arguments, (U), are dropped for convenience) [68,69]: 

E { *t   J 
XJ }- Tj(ti)= £Tj(U-i)CT + GoQoGj (68) 

where 

£   = 
0 *t 

(69) 
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Go   = 
TGdt   *jKj 
Gdt 0 

Qo = 
Qd*   o 

O     Rt 

and 

TA$   =   QjT-T&t 

AH   4   UjT-Ut 

Notice that L, G0, and Qo are formed by partitioned matrices. If C is a contraction, as U —► oo, 

Tj(ti) approaches a constant value which is the steady state prediction error autocorrelation, and is 

xT    xjl   I, is *T, the autocorrelation of 

< xj W x"     > is calculated by: 

denoted TJ>. The upper left partition of Tj(U), E \ 

the estimator prediction error for the jth filter, and E 

E { xi W }- tr wv: (70) 

This value can be calculated at any point in the parameter space once the filter to which the MMAE 

converges is identified. Given that there are sufficient conditions for the MMAE to converge in 

"Baram sense" [4], it will converge to they'"7 filter governed by [68,69]: 

^• = min4 fc=l,...,J (71) 

where 4 is defined as the proximity of the kth filter generated by [4] as: 

^lofclAtl + fr-jlA*]-1^!!*   AH]rr[Hfc   AH]T + Rf)} (72) 

given 

Afc = HfcP^H£ + Rfc (73) 

Careful attention should be paid to Equation (72) recognizing that the notation [ Hfc AH ] indi- 

cates partitioned matrices. 
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Sheldon developed a five-step algorithm allowing the designer to approximate and minimize 

the cost functional given in Equation (60) or (62) numerically : 

1. Start by describing the system in terms of the parameter vector a, specifying the structure of 

the truth system and the filters to be implemented in the estimator 

2. Choose J, the number of filters to be implemented in the estimator 

3. Choose a representative parameter set to begin the minimization. The set should be chosen 

based on which cost functional is being minimized: 
- For the cost function that penalizes state estimator errors, a reasonable choice can be 

obtained by plotting the optimal estimation error autocorrelation, Equation (70), for a coarse 
discretization ofthe parameter space assuming a, = at at each point. Thelargerir [W*^~] 
is, the closer the representative parameters should be. 

- For the cost function that penalizes parameter estimator errors, a reasonable choice may be 
made by equally dividing the admissible parameter region into equal intervals and choosing 
the midpoint of each interval as a member ofthe representative parameter set 

4. Use a numerical integration technique to evaluate Equation (60) or (62) for any given choice of a 

representative parameter set. The functional evaluations required at each interval are calculated 

with Equation (68). The information required to set up Equation (68) is based on the proper 

filter selection per Equation (72). Note, for the cost functional pertaining to the parameter 

estimator, the value of ä needed in Equation (62) is the value of a forming the basis ofthe filter 

selected at the evaluation point. 

5. Step 4 generates a numerical approximation to the value of C(a) for a prespecified choice 

of parameter vector a. The problem becomes a vector minimization problem, and a vector 

minimization technique can be used to minimize C(a) using the procedure in step 4 to evaluate 

the functional for each parameter vector 
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To avoid estimator lockup, Sheldon extended his work to account for the design practice of 

placing lower bounds on the elemental filter probabilities, pj. The lower bounds, yw, are used to 

ensure that the system is adaptable to true parameter value changes [68,69]. The parameter estimate 

is then given by 

j 

3=1 
J 

=    {[l-(J-ftnin)]aM'(ti)} + X;ai(t+)ftllla (74) 
3=1 

where asel indicates the filter-assumed parameter value selected via Equation (71), i.e., theyth filter 

to which the MMAE converged in the "Baram sense" [4]. The cost function in Equation (62) is 

now solved using ä(U) from Equation (74). 

Sheldon's algorithm will be modified to provide on-line discretization of an adaptive MMAE 

bank, including the use of a finite horizon discussed previously. Specifically, a moving-bank MMAE 

will be incorporated with the modified on-line Sheldon discretization, as presented in Section 3.1.5.4. 

2.2.4  Hierarchical Structure 

Maybeck and his students have researched multiple failures for reconfigurable flight control 

via MMAE methods [11,14,15,50-52] and the following section parallels the discussion presented 

by Miller [53]. If a multiple model algorithm were based upon all possible single and double failures 

of K sensors, it would require one elemental filter for the fully functional status, K single-failure 

elemental filters, and K!/[(K-2)!2!] double-failure filters. To avoid this computational burden, the 

idea of the "moving-bank" leads to the concept of a hierarchical structure that requires at most only 

(J=K+1) elemental filters to be on-line at any given time: the same number used when only single 

failures are modeled. Figure 11 illustrates such a hierarchical structure.   At "Level Zero", there 
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Figure 11. Hierarchical Modeling - Level 0 and Level 1 MMAE Banks 
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are K elemental filters specifically designed for one of the single-failure conditions and one con- 

figured for the fully functional system (denoted as ao in the figure). Upon confirmation that failure 

"k" (any of the possibilities 1,2,...,K) has occurred, a new MMAE bank is brought on-line from 

memory at "Level One" and replaces the original "Level Zero" MMAE. It would consist of J=K+1 

elemental filters: one designed for the kth single-failure condition (denoted afc), K-l configured 

for the double-failure condition of the known kth failure plus one of the remaining possible fail- 

ures (denoted a.ki), and one designed for the fully functional (ao) system to allow for using future 

measurements to change the decision that the first failure, had, in fact, occurred. 

2.2.5  Inter-Residual Distance Feedback (IRDF) 

The following section parallels the discussion presented by Miller [53]. The common assump- 

tion used when employing MMAE techniques, is that the parameters take on only a finite number 

of different values. An MMAE's successful operation depends on the distinguishability of the mod- 

els used and the tuning of the filters based on the parameters chosen. There must be significant 

differences in the characteristics of the residual in the "correct" versus "mismatched" filters. Each 

filter should be tuned for best performance when the "true" values of the unknown parameters are 

identical to its assumed value for these parameters. When Kaiman filters are used in the bank, con- 

servative tuning should be avoided to prevent the residuals from becoming too close together and 

affecting the discrimination property of the filter bank For fast and reliable discrimination, the 

residuals should be as distinct as possible [36,45]. 

Lund has proposed a modification to the MMAE concept and has successfully demonstrated 

it, by simulation, for a second order single-input single-output system [35,36]. The method, Inter- 

Residual Distance Feedback (IRDF), provides for on-line modification of the elemental filters for 

the purpose of maintaining the discrimination property of the MMAE filter bank. The method 
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modifies the elemental filters to keep the predicted measurements from becoming too close in "some 

sense", thus affecting the distinguishability of the elemental filters and thereby the properties of the 

MMAE algorithm. The elemental filters are modified by detuning the filters through modulation of 

either the dynamic driving noise Qd, or the new information KjTj directly. Recall that K, is the 

jth elemental filter gain matrix and r, is the residual vector of the jth elemental filter. Modulation 

is governed by a scalar quantity computed from a distance measure between the residuals. The 

IRDF concept was initially applied to continuous-time systems by Lund [35,36] and extended to 

the discrete-time case by Miller [53]. 

2.2.6  Model-Group Switching 

A new algorithm has been developed that includes the additional flexibility of changing the 

number of filters in the MMAE bank [31]. Notice that all the other methods discussed to this point 

require the number of filters in the bank to remain fixed. The new algorithm is called model-group 

switching (MGS) since it relies on groups of models which are closely related in terms of system 

behavior and switches between these model groups. Switching refers to choosing which model 

groups are included in the MMAE at each sample time. More than one model group can be active 

at a given time and later deactivated based on the decision logic. Clearly the number of filters in the 

bank as well as the span of the bank inparameter space would change as the switching logic activates 

and deactivates model groups. Consider a two-dimensional parameter estimation problem. Several 

model groups could be dedicated to each parameter If a parameter variation is detected in one 

dimension, then the model groups associated with that parameter would be candidates for inclusion 

into the bank. Once the parameter estimate adapts and is deemed adequate, then either the original 

model group or the newly activated model group could be deactivated to reduce computational 

loading. 
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2.3 Chapter Summary 

This chapter presented the background theories that lay the foundation for the new concepts 

developed in Chapter 3. Some of the items discussed here, such as chi-square tests and SPKTs, 

provided insights into the development of new hypothesis testing ideas and analytical means of 

selecting decision thresholds. Sheldon's discretization technique and the moving-bank MMAE will 

receive considerable attention in the next three chapters. All of the ideas presented in this chapter, 

including the basic voting method which led to combining decision making measures with logical 

AND's and OR's, played an important role in the development that follows. 
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Chapter 3 - Theory Development 

This chapter presents the theory developed in support of the dissertation research. Section 2.2.3 

introduced the fundamental concepts of a moving-bank MMAE. The focus of the research has been 

to develop algorithms designed to direct the placement of the parameter points to be used as the basis 

of the elemental filters in a moving-bank MMAE. It is desired to exploit the available information 

as fully as possible, to make decisions to move, expand and contract the bank in a better and more 

systematic fashion than is currently possible with the ad hoc techniques described in Section 2.2.3. 

To this end, two new algorithms have been formulated and are titled the "Density Algorithm" and 

the "Probability Algorithm". The density algorithm is subject to many ad hoc methods including 

empirically determined thresholds, but some progress has been made in the development of analyt- 

ically determined thresholds. Additionally, this algorithm presents the first steps in the exploitation 

of density data available from the MMAE as described in the next section. Finally, research into 

portions of the density algorithm led to the development of the probability algorithm, which is much 

more analytical in both its derivation and implementation. The sections in this chapter describe the 

thought processes behind the development of the algorithms, including the underlying theories and 

the details of the final implementations. 

Figure 12 shows the major topics of interest related to the moving-bank MMAE as (1) decid- 

ing when and where to move the bank (2) deciding when and how to expand or contract the bank (3) 

determining the level of discretization for the bank and (4) other techniques such as model-group 

switching and IRDF. The newly developed algorithms address major topics (1) - (3), and compar- 

isons to previous methods are discussed theoretically in this chapter and through simulation results 

in Chapter 4. 

55 



Move 
Method 

* Residual Monitoring 

* Parameter Position 
Estimate Monitoring 

* Parameter Velocity 
Estimate Monitoring 

* Probability Monitoring 

Moving-Bank MMAE 

Expand/Contract 
Method 

Residual 
Monitoring 

Other Discretization 
Level 

AdHoc 

Parameter 
Estimation 
Error Covariance 
Monitoring 

Sheldon Cost 
Minimizing 

Figure 12. Moving-Bank MMAE Topics of Interest 

3.1  Density Algorithm 

Since considerable research had already been conducted in the realm of moving-bank MMAE's, 

the primary question being asked at the onset of this research was "what new information can be 

exploited to derive a new moving-bank algorithm?" The answer is contained in the conditional den- 

sity of the current measurements, conditioned on the assumed value of the parameter vector and the 

observed values of the previous measurement history, /z (ti) | a, z( t; _!) (zi I aj > zi-1) >which will be re- 

ferred to as the density A^z^ for simplicity. Recall that each elemental filter in the MMAE bank 

provides a sample of this density function, each for a different value of a,-. The sample values are 
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calculated using Equation (47), which is repeated here. The density samples are given by 

/■(tOMfo-O W*»i. z*-i) = ^iexP{-} O75) 

where 

ßj =  (27T)W2|Aj.(ii)|l/2 ™ 

and the expression in the brackets is 

{■} = {-^l(U)A]1(ti)rJ(ti)} (77) 

The following subsections discuss the details of a new algorithm based on the above density, begin- 

ning with its development through data analysis, followed by a description of the logic flow, and 

ending with enhancements that improved the algorithm's performance. 

3.1.1   Algorithm Development 

Although this algorithm is focussed on the density /Zi|a,z;_l3 the actual density that is more 

motivating to monitor and characterize is /a|Z.. Note the subtlety in the subscripts which identify 

this function as the conditional density of the parameters based on the measurement history The 

underlying concept behind utilizing the density A^z^ is to determine the shape of the conditional 

density /a|Zi. A natural question would be, why not consider /a|Z. itself directly, and this will be 

answered as the discussion develops. The next step might be to center around or contract about the 

highest peak of/a|Z. in the parameter space, as this will appropriately yield the placement of the 

elemental filters about the region of highestprobability. This concept is motivated by the relationship 

between the two density functions which is shown here and derived by Maybeck [45]: 

« Jzi|a,Zj_i Ja|Zj_i fHQ\ 
Ja|Z, = 7 ~t r T- V») J.4ll/.1|a,Zl_1/a|Z<_lda 

Note that a can assume any value in a continuum set A* C Kp and a is a dummy variable for 

the parameter vector One could simply distribute the discrete parameter values to be used for the 

basis of the elemental filters, uniformly about the peak density value. Alternatively, nonuniform 
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distributions could be used based on the shape of the density. The problem is that the shape of /a|z. 

or its peak value are not known but merely J discretized values of it are available, where J is the 

number of elemental filters in the bank If the parameters could only assume one of J discrete values 

given by ai, a2,..., aj, then Equation (??) would yield 

j 

/«|zf   =   $>;(*)%-a,) (79) 

where Pj(U) is given by Equation (44), repeated here: 

PiiU)   =   —j— r-j „    v   (.    v (8°) 

However, we actually wish to conceive of/a|Z. as a continuous surface for which Equation (79) is 

to be viewed as a discretized approximation (the Pj{U) are then "volumes" under that surface over 

areas surrounding each a,-) that will change with the number and location of the discrete values a,-. 

However, the approximating density given by Equation (79) is normalized in the above equation 
j 

such that Y, Pi = !» so ^G probabilities only give an indication of the density shape within the 

region covered by the bank. In other words, it assumes the density function is essentially zero outside 

the bank and thus distorts the true shape of the density at the sampled values. For instance, if the 

bank were currently located far from the true parameter, then all of the likelihood quotients given by 

Equation (54) would be very large (indicative of the bank placement problem), and thus all of the 

/ziia.z^! values given by Equation (75) would be correspondingly small, but the pj(U) 's computed 

by Equation (80) would always add to one and not reveal the problem. This motivates exploiting 

the unnormalized samples of fXi\Slizi^1 with a newly developed decision logic. Additionally, note 
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thatpj(ti) in Equation (80) is a function of /z(tj)|a,z(ti_i) andpj(**-i) (the elemental probability 

value at the previous sample time), so the density, /z(ti)|a,z(ti_i)> provides lead-type information 

about the probabilities and anticipates changes in these probabilities. This implies that a decision 

logic based on /z(ti)|a,z(t4-i) has the potential to react to changes in the true parameter value more 

quickly man a decision logic based on pj(U). This implication is supported through simulation 

results presented in Chapter 4. 

Now that the unnormalized samples of/z.|aZ. ^were identified as the "quantities of interest", 

extensive empirical analysis was conducted to determine useful trends in this piece of data. Com- 

puter simulations were performed using a filter performance evaluation tool named MMSOFE [60] 

that subjects a proposed MMAE design against a "truth model" simulation of the real world (and 

then conducts a Monte Carlo analysis), and a 13-state GPS / INS navigation model detailed in Chap- 

ter 4. In this particular application, the uncertain parameter is a scalar, the covariance RGPS of the 

noise in the GPS measurements, given by Equation (35) and appearing in Equations (37) - (51) 

and explicitly in Equation (39). The empirical analysis began by simply observing the raw density 

data plotted in MATLAB [41] and manually identifying trends that appeared in the elemental filter 

densities when parameter variations were induced into the truth model. The manual analysis led to 

investigations into what types of measures of the raw data would provide an algorithm with indica- 

tors useful in a decision logic. Candidate measures were analyzed based on consistency of making 

the desired (appropriate) decisions such as move, expand or contract the bank in the presence of 

parameter changes. Once the candidate measures were classified as accepted or rejected, a prelim- 

inary decision-making process was conceived and implemented. A short study was performed to 

recognize both desirable and undesirable trends in the preliminary algorithm. Additional measures 

and techniques were analyzed, leading to the final algorithm. 
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3.1.2  Candidate Measures Rejected 

The following paragraphs describe the measures that were considered for use in the density 

algorithm but rejected. Reasons for rejecting these relative to other possible measures are discussed 

for each measure, and then attention will be focussed on the accepted measures in Section 3.1.3. 

Candidate measures mat were rejected are labeled mi whereas those that were accepted are labeled 

Mi. 

Sum of density values: This measure was intended to indicate whether the filters assuming 

the current parameter values were placed in a region of high or low probability in terms of the true 

density f^z . This is best illustrated in simplified drawings of the density function for a one- 

dimensional problem. Figure 13 shows that a good choice of parameter values ai - a3 (i.e., close 

to the true parameter value) would result in all large values for the density function samples. Note 

carefully that Figure 13 is a plot of /..[«.z, ^(CifaZt-i)versus the parameter a rather than versus 

the incoming measurement d, as might have been anticipated. In the context of an MMAE, at time 

ti we know d and Zj_i but we do not know the best value (or values) of a, so this makes sense. 

True Density f_z|a,Z 

a i     a 2     a 3 
Parameter Values 

Figure 13. All Density Values Relatively Large 
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If d and a were both scalar-valued, then one could conceive of plotting /Zi|a,zi_1 (CilQÄ-i) as 

a surface over the £i - a plane (let Ci rise vertically out of the page in Figure 13). Then one could 

slice through that surface with a plane at the known (observed) value of d, which would yield the 

plane of the previous page and Figure 13 as the appropriate slice out of the surface. 

Similarly, Figure 14 shows that a poor choice of parameter values ai - a3 (i.e., far from the 

true parameter value) would result in all small values for the density function samples. The resulting 

measure 

"»i   =   53/m|a,zO') 

could then be used as a basis for decision making. Unfortunately, this measure gave inconsistent 

trends, as its order of magnitude changed significantly as a function of the true parameter value 

rather than how well the filter-assumed parameter values matched the true parameter value (recall 

that the uncertain parameter is the measurement noise covariance, R(*i)). For example, if the true 

parameter value changed by an order of magnitude, then the measure would follow suit regardless 

of whether or not the filter assumed-values were well placed with respect to truth. 

True Density fz|a,Z 

s i       a 2       a 3 

Parameter Values 

Figure 14. All Density Values Relatively Small 
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Sum of delta density values: The phrase delta density value refers to the difference between 

the density samples of two adjacent elemental filters within the bank. The filters are placed within 

the bank such that their assumed parameter values are in ascending order The sum of the absolute 

value of these delta values is used to form rejected measure mi: 

j-i 

m2    =    ^\fz\a,z{j) ~ fz\*,zO + X)\ 

Notice that the absolute value of the delta density is used to gain insight into the variations of the 

density samples. A lack of variation of the density samples would indicate that the filters are located 

close to truth, provided that mi is simultaneously large, and thus preclude the algorithm frommaking 

unnecessary bank movements. Figure 13 shows such a case where the density variations would be 

small. A lack of variation while mi is simultaneously very small could indicate being very far from 

the true parameter value, as seen in Figure 14. In contrast, Figure 15 shows the case where large 

variations and thus a large value for m2 would exist, leading to the desire to move the filter bank 

closer to the density peak, i.e., to the right. This measure also gave inconsistent trends as its order of 

magnitude changed significantly as a function of the true parameter value. This was later rectified 

by normalizing the delta density values, resulting in the accepted measure M5 discussed presently. 

Curvature and slope of spline fit [m3c and m3s]: Recall that J samples of the density function 

are available, where J is the number of filters in the bank. The intent is to gain insight into the 

shape of the density function based solely on these J samples and make a determination where 

the elemental-filter-assumed parameter points lie in the parameter space with respect to truth. The 
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ä i       E 2       S3 

Parameter Values 

True Density fjz|a,Z 

Figure 15. Large Variations in Density Values 

density samples for each filter are plotted at a given sample time and a spline fit is performed. 

The measures, m3s and m3c, represent the first and second derivatives of the spline fit evaluated 

at specified points. MATLAB provides toolbox functions for performing both the spline fit and 

calculation of its derivatives [41]. The curvature, m3c, or second derivative of the spline fit is 

evaluated at the maximum density sample and is used to help determine the appropriate span of the 

filter-assumed parameter values within the bank. For instance, a large negative curvature indicates 

that the density function has a narrow peak and suggests using a small bank span, while a small 

negative curvature which indicates that the density function has a broad peak and suggests using a 

large bank span. Additionally, m3c could provide information about the location of the true density 

peak with respect to the current density samples. For example, a positive curvature would result 

from the density samples shown in Figures 14 or 15, giving an indication that the true density peak 

is to the left or right, respectively. A negative curvature would result from the density samples 

shown in Figure 13, giving an indication that the true density peak is within the range spanned by 

the filter-assumed parameter values. Additional insights could be obtained by observing the sign of 
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the slope, m3s, or first derivative of the spline fit evaluated at each density sample, since a change 

from positive to negative slope would indicate that the true density peak lies between the elemental 

density samples associated with this sign change. 

The spline fit proved to be computationally intensive and suffered oscillations about the zero 

crossing when the filter-assumed parameter values spanned a large range, as shown in Figure 16. 

Oscillations about the zero crossing is a natural occurrence when attempting to curve fit data that 

are separated in the abscissa by orders of magnitude. Nevertheless, this made the measure based 

on the slope and curvature of the spline fit unreliable for consistent decision making, since density 

functions clearly cannot be negative. Constrained best fits, using nonnegative splines, and other 

means of rectifying this problem were considered. However, this was eventually abandoned because 

some of the other measures (in Section 3.1.3) provided consistently useful information that was 

analogous to this measure's information, but with much less computational load. 

Density Samples 
Spline Fit 

C&1     &2      &3 

Parameter Values 

Figure 16. Spline Fit of Density Samples 

Measures of the likelihood quotient and residual covariance: Likelihood quotient monitoring 

was implemented to help identify the "correctness" of a given filter. Thus m4 = Lj(U) for j = 

1,2,... J. Likelihood quotient monitoring utilizes the likelihood quotient, Lj = rjAj1^-, which 

is compared to a threshold value. If the threshold is exceeded, the filter is considered a bad match 

to truth, i.e., it has relatively large residuals. However, if Lj is below the threshold, then the filter 
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is considered a good match to truth, i.e., it has relatively small residuals. This information was 

intended to provide insights into how harsh a movement should be, i.e., hard, firm or soft. These 

relative terms for the harshness of a move indicate how far the bank is moved in the parameter 

space and will be explained in Section 3.1.4.2. The upcoming discussion of measure M-j details the 

successful use of likelihood quotient monitoring to identify poorly matched filters. 

It was also proposed that the likelihood quotient could provide additional information about 

which direction to move the bank or when to expand/contract the bank. Preliminary analysis indi- 

cated a need to rescale Lj by some measure of the matrix A-1 prior to comparing it to the threshold. 

The reason is that the quadratic rjAj1^- was dominated by large values of the filter-assumed pa- 

rameter (i.e., large entries in the R, matrix), regardless of changes in the residuals, TJ. Recall that 

large residual values relative to the filter-computed residual co-variance Aj(U) (and thus a large 

likelihood quotient) indicate that the filter is a poor match to truth, whereas small residual values 

relative to Aj(ti) (and thus a small likelihood quotient) indicate the filter is a good match to truth. 

However, the filter-assumed measurement noise covariance, Rj, was varied by three orders of mag- 

nitude between elemental filters, and the filter-computed residual covariance matrix was calculated 

using Aj= HjPjHj+Tlj. Therefore, the likelihood quotient was dominated by the term Aj1 and 

masked the useful information contained in the residuals. An attempt was made to rescale Lj using 

measures ms — m^ shown here: 

ms   =   Lj scaled with Trace(A"1) 

me   =   Lj scaled with Det(A-1) 

77i7   =   Lj scaled with sum of all elements of A- * 
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All three measures failed to provide a consistent method for rescaling Lj. An alternate logic was 

developed that focused on the similarity of the Lj values for each filter and is presented in the 

discussion of measures Ms and Mg. 

3.1.3   Candidate Measures Accepted 

The following paragraphs describe the measures that were considered for use in the density 

algorithm and accepted. Recall that candidate measures that were rejected are labeled m* whereas 

those that were accepted are labeled M». 

Maximum Density Mue: This measure simply takes on the maximum density sample value 

from within the filter bank at each sample time. 

Mi = nu«[/,|aizO')]        J = 1...J (81) 

The primary use of this measure is to normalize the density samples by dividing M\ into some 

function of the elemental densities (see measures M5 and M6). The need to normalize the measures 

became apparent when analyzing the raw data. Since the measures are often compared to thresh- 

old values, it is necessary that these thresholds be applicable in the presence of the true parameter 

variations. However, in many simulation cases in which the true parameters were required to vary 

significantly, the density samples and thus the measures were badly scaled, disguising any useful 

information. The relative magnitudes of the density samples and measures did present the type 

of information needed to make good moving-bank decisions; so the density samples were simply 

rescaled by the maximum value, M\, and consistent decision making ensued. 

Filter Index Associated with the Maximum Density Mue: With the filters numbered from 1 to 

J, the measure Mi e [1, J] is the integer value associated with measure M\\ 

M2 = arg i max [/z|a,z(j)]\        j = 1... J (82) 
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For example, if the maximum density sample is associated with filter 3, then Mi = 3. This measure 

indicates which direction, left or right, to move the bank, as explained by the following example. 

Consider a bank of three filters (J = 3) in which all three filters are located in parameter space to 

the left of the true peak density value (see Figure 15 on page 63). Since filter 3 is associated with 

the maximum density sample from within the filter bank, then Mi = 3. The ensuing logic is 

IF Mi = J =>■ Move Right      OR      IF M2 = 1 =► Move Left 

Further insights into this logic are gained by looking at the expression for the conditional probabil- 

ities: 

/z(ti)|a,Z(ti-1)(Zi|aj)Zt-l)Pj(^-l) 
Pj[ti)     =     —j J—J- —  [03) 

Measure M2 is identifying which filter has the largest numerator density term in Equation (83) and 

thus the largest premultiplier for this iterative probability calculation. This further indicates which 

filter is attempting to "absorb" more of the probability and become the filter the MMAE minks is 

the best match to truth. In this manner, focusing on /z(ti)|a,z(ti_,)(zilai> zi-i) provides aprediction 

of future values ofpj(U), i.e., it provides useful "lead" information about probability flows. The 

same move logic described previously for measure Mi can now be applied. If the filter on the right 

end of the bank (filter J) is the best match to truth, then move the bank to the right. Similar logic 

is used for moves to the left. The bank would continue to move (left or right) until M2 becomes 

associated with a filter other than the ones on the ends of the bank, i.e., 1 < M2 < J, and preferably 

with one near the center of the bank. 

Maximum Probability Mue:   This measure simply takes on the maximum probability value 

from within the filter bank at each sample time. This measure is not explicitly used but is included 
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to lend clarification to measure M4. 

M3 = max [ft]        j = l...J (84) 
i 

Filter Index Associated with the Maximum Probability Value: With the filters numbered from 

1 to J, the measure M4 £ [1, J] is the integer value associated with measure M3: 

M4 = arg < max \pj]>        j = 1... J (85) 

For example, if the maximum probability value is associated with filter 2, then M4 = 2. This 

measure indicates the filter which best matches the truth model at each sample time. It is used in 

conjunction with measures Mg and M9 to normalize the likelihood quotients used in these measures. 

Sum of Normalized Delta Density Values: The phrase delta density value refers to the differ- 

ence between the density samples of two adjacent elemental filters within the bank. The filters are 

placed within the bank such that their assumed parameter values are in ascending order The nor- 

malized sum of the absolute values of these delta values is used to form measure M5: 

Ms   =   £ 
/z|a,zQ") -/zja,zQ'+l) ,%„ 

Mi 

Notice that the absolute value of the delta density is used to gain insight into the variations of the 

density samples. A lack of variation of the density samples would indicate that the filters are located 

either close to or far from truth. 

First, consider the case shown in Figure 13 on page 60 in which the density variations would 

be small, and it would be desirable to preclude the algorithm from making unnecessary bank move- 

ments. In contrast, Figure 15 on page 63 shows the case in which large variations and thus a large 

value for M5 would exist, leading to the desire to move the filter bank closer to the density peak, 

i.e., to the right. Measure M5 does not indicate which direction to move the bank but simply that a 
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move is needed. This dictates the need to combine measures in the decision logic, as described by 

the flowchart in Section 3.1.4. 

Next, consider the case shown in Figure 14 on page 61 in which the density variations would 

be small (and also their total values would tend be small, unlike above), precluding a move by the 

logic of the preceding paragraph, yet a move would be desirable. This combination of conditions is 

only likely to occur if the filters are too finely discretized, and the upcoming discussion of measure 

MQ will introduce the use of expansions for this scenario. In other words, the lack of distinguisha- 

bility between the filters is caused by the discretization being too fine, resulting in a small value for 

M5 and prevention of a bank movement. Clearly a large bank movement would be better than an 

expansion, so it will be necessary to check first for movement of the bank and give this precedence 

over an expansion. This is illustrated in the flowchart presented in Section 3.1.4. In lieu of the bank 

movement, a bank expansion, or possibly several expansions, would improve the distinguishability 

between the filters, leading to an increase in M5 such that a bank movement would be permitted. 

An alternative and much simpler logic was first considered which relied on the magnitude of the 

density values to identify when the density values were all small (see Figure 14 on page 61) versus 

all large density values (see Figure 13 on page 60). However, large variations in the true parameter 

value were found to induce large variations in the density samples, making it impossible to establish 

a threshold that would consistently distinguish between small and large density values. Therefore, 

decision logic based on the magnitude of the density data was abandoned in lieu of decision logic 

based on the relative variations of the density data. The examples discussed in these last two para- 

graphs make it clear that measure M5 by itself is not sufficient for making movement decisions, 

and Section 3.1.4.1 will describe a combined logic based on measures M2 and M5. 

The delta density values are normalized via division by Mi (the maximum density sample) to 

prevent the large magnitude variations encountered with measure mi. Once normalized, the delta 
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density measure provides consistent indications that the filter-assumed parameter values are either 

very close to or veiy far from the true parameter values. 

The relative terms of large and small used above require a more precise definition. A simple 

threshold-based logic is given by 

IfM5>Ti => variations are sufficiently large =*> a move is desired (87) 

The threshold, T\, is determined empirically in the following way. First, develop the system models 

in software so that computer simulations can be conducted on a variety of case studies. The case 

studies should represent the designer's best depiction of real-world variations of the true parameter 

values. Next, run simulations and collect raw density data and indications of appropriateness of bank 

motion at each time for these case studies. Post-process the raw data to calculate the measures, and 

a reasonable choice for Ti that leads to desired bank movements should be apparent. Validate the 

decision logic by performing the threshold check in Equation (87). 

Counted Filters: This measure provides the number of density samples within a scale factor, 

7, of the maximum density sample, indicating if the filter-assumed parameter values are too finely 

or too coarsely discretized. 

J fir.   „(A\ > ML 

Me   =   5>)   where   «j) = { \   ^ 
3=1 *" 

0')> 
otherwise 

Specifically, a filter is considered "counted" =*■ £(j) = 1 if the elemental filter's density sample, 

/z|a,zO')> is greater than the maximum density sample, Mi, divided by 7. This is illustrated in 

Figure 17 where 7 out of 9 filters have density samples greater than Mi fa. For7 = 10, the measure 

is indicating how many of the density samples are within an order of magnitude of the maximum 

density sample. Notice that M6 will have an integer value in the range [1,J] and leads to two possible 
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Figure 17. Illustration of Scale Factor in Calculating Measure M6 

decisions. If the filter-assumed parameter values are too finely discretized about the true parameter 

values, as shown in Figure 18, then the filters will all tend to have density samples of the same 

magnitude and thus M6 will be large, i.e., close to the number of filters J. This would warrant an 

expansion of the bank. The potential flaw in this logic occurs when all the density samples are 

small but still of the same magnitude, as in Figure 14 on page 61. Clearly a movement would be 

better than an expansion; so it will be necessary to check first for movement of the bank and give 

this precedence over an expansion. This is illustrated in axe flowchart presented in Section 3.1.4. 

The reason for giving bank movements precedence over bank expansions is arbitrary and lies 

primarily in the development of the decision-making process. It is necessary to establish a structure 

for the decision-making process that assumes either moves or expansions have precedence. This 

prevents the logic from using a measure such as Me to cause confusion and simultaneously invoke 

both amove and expansion when only one or the other is most desirable. The choice is arbitrary, and 

the algorithm could have been constructed with precedence given to expansions and contractions 

over movements, but this development did not. 
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Figure 18. Finely Discretized Filters => Expand the Bank 

Alternatively, if the filter-assumed parameter values are too coarsely discretized about the true 

parameter value, as shown in Figure 19, then all the filter density samples relative to the maximum 

sample will tend to be small (other than the maximum itself) and thus M6 will be small, i.e., close 

to one. This would warrant a contraction of the bank. As with measure M5, the relative terms of 

large and small need further definition. Two threshold based decisions are given by 

IF M6   <   T2 => too coarsely discretized => contract (89) 

IF Mß   >   T3 =» too finely discretized => expand (90) 

Additionally, measure Me has a second degree of freedom in the selection of the scale factor 7. 

The same methodology discussed below Equation (87) for the selection of threshold T\ should be 

employed here for 7 and thresholds T2 and T3. Empirically determining all these values may seem 

intimidating, if not tedious, at first. However, some simple guidelines should assist considerably in 

this effort. First, T3 must be greater than T2 (T3 > T2), otherwise the logic could attempt to contract 

and expand the bank at the same time, which makes no sense. Second, T2 should be close to one; 

since a contraction is only needed when all but one or two of the filter-assumed parameter values 
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Figure 19. Coarsely Discretized Filters =*• Contract the Bank 

are far from the true parameter values. The exception to this rule is found when a large number of 

filters (more than 7) are dedicated to a single dimension of the parameter estimates, in which case 

T2 may need to be greater than one or two. Third, T3 should be close to J (the number of filters in 

the bank) since an expansion is only needed when most, if not all, of the filter-assumed parameter 

values are clustered around the true parameter values. Finally, it is best to set both T2 and T3 prior 

to selecting the scale factor 7; since this last degree of freedom is much more problem-dependent 

than the thresholds, which are mainly affected by the number of filters in the bank. Analysis of 

the raw measure data will give a reasonable indication of where to set 7 such that contractions and 

expansions occur when desired. 

Bad Filters: This measure represents the number of "bad" filters, "bad" in terms of a large 

likelihood quotient rjAj1^ for each filter Recall that a large likelihood quotient implies the filter 

is a poor match to truth, and by simply counting the number of bad filters, decisions can be made 

concerning the appropriate harshness of an intended bank movement. Thus let measure M^ be 
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defined as: 

M7   =  ±m   where   «,■) = { J-   ^>r* (91) 

A foräicoming discussion on the types of bank movements employed will show the utility of this 

measure. The basic concept is that, if all the filters are a bad match to truth and a decision to move 

the bank has already been made, then the harshness of this move should be hard versus medium or 

soft. These relative terms for the harshness of a move indicate how far the bank is moved in the 

parameter space and will be explained in Section 3.1.4.2. 

An alternative use of the information contained in this measure was considered but not thor- 

oughly pursued due to time constraints. Notice that £(j) in measure M7 associates a binary value 

with each elemental filter, and the concatenation of these binary values could be viewed as a binary 

word. Consider the three cases [1 0 0 0 1], [11 0 0 0], and [0 0 0 11] which all result in M7 = 2, but 

depict significantly different scenarios requiring different moving-bank decisions. In this context, 

the value of M7 is less important man the location of the 1 's and 0's or the decimal value associated 

with each binary word. For example, large binary words such as [11 0 0 0] 2 = 24io would indicate 

a need to move right, away from the "bad" filters, versus small binary words such as [0 0 0 1 1]2 = 

3io used to indicate a need to move left. This same type of binary word construct could be used to 

enhance the information content of any measures expressed as sums in this section, i.e., M5 through 

M9. A recommendation is made in Chapter 5 to pursue a decision-making process that exploits this 

type of information. 

Determination of the threshold, T4, is a key issue that warrants additional discussion. The fact 

that the density function of the quadratic rjAj1^ for the case in which the filter is aperfect match 
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to truth can be fully characterized, lends insight into what threshold value will separate the good 

filters from the bad ones. Recall from the discussion in Section 2.1.2 that, if the filter model matches 

the truth model, then its residuals will be a zero-mean white Gaussian process with known residual 

covariance, Aj. Furthermore, the quadratic form, 

X^to-OfAjHTj-O) (92) 

which explicitly involves both the mean and covariance of the Gaussian residuals, is Chi-Squared 

distributed [65]. The well-known density function for Xj has a single degree of freedom equal to 

the dimension of the residuals, m, and is given by: 

ffc)   =   _^L—  c(W2)-ie-c/2       >o (93) JxK ' r(m/2)2m/2 

where c is a dummy variable associated with the random variable x and T is the standard Gamma 

function. Given this knowledge of the density function associated with "good" filters, a threshold 

can be chosen based on the probability of correctly classifying "good" filters. Express the proba- 

bility that the Chi-Squared variable will lie below a threshold as 

PxiXi < TA) (94) 

The shaded area in Figure 20 represents this probability for an example with m = 6 and Px = 0.995. 

This is the probability of correctly classifying "good" filters, which if available as a design para- 

meter, should be used to set the threshold T4. One simple method for finding T4 given a desired Px 

is to utilize a MATHCAD function "T4 = qchisq(Px,m)n which is a function of both the desired 

probability and the dimension of the residuals [39]. 
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Figure 20. Chi-Squared Density for m=6 Degrees of Freedom 

A more ideal approach to choosing the threshold would incorporate false and missed alarm 

rates and a likelihood ratio of the form: 

ZxWHi) 
i(x) /x(c|Ho) 

(95) 

where /x(c|Hj) represents the density function of the random variable x given that hypothesis H* 

is true. If the hypotheses are established as 

Ho =>■ filter perfectly matches truth 
Hi =>■ filter is mismatched to truth 

then the density function /x(c|H0) is precisely the Chi-Squared density function given by Equation 

(93) and the generalized Chi-Squared density function, /x(c|Hi), must be determined. Given that 

a closed form expression could be found for /x(c|Hi), then the common likelihood ratio tests such 

as the Neyman-Pearson Test or a Sequential Probability Ratio Test could be employed as described 

in [12,65] and Section 2.1.3. These tests return threshold values based on false and missed alarm 

rates specified by the designer Recall the definition of a false alarm rate, a, as the probability of 
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incorrectly declaring hypothesis Hi is valid when Ho is true. Define a missed alarm rate, ß, as 

the probability of not declaring hypothesis Hi is valid when Hi is true. Considerable effort was 

given to finding a closed form for /x(c|Hi), resulting in expressions for the first two moments of 

the random variable. The derivations of these moments are presented in Appendix A. However, 

a general equation for the density function was not found and is a topic for future research. The 

research in this area branched off to numerical techniques for calculating the probability, Px, for 

the generalized Chi-Squared case, leading to the new discretization technique presented in Section 

3.2. In summary, the method currently used to set threshold, T4, is to designate the probability of 

correctly classifying "good" filters, Px(Xj < TA), then use MATHCAD [39] to calculate T4 via 

T4 = qchisq(Px,m). 

Similar Filters: The fundamental concept of measure M7, which focused on distinguishing 

between good and bad filters, led to the idea of measure M8. "Similar filters" refers to filters having 

similar rjAj1rj values. If a filter's likelihood quotient is close to the likelihood quotient associated 

with the filter having the maximum probability weight (indicated by measure M4), then that filter 

is declared similar to the one with the maximum probability weight. This is determined by taking 

the ratio of the likelihood quotients Lj = rjAj1^ and LMi = ^M^MJM^ then checking if this 

ratio falls within the region defined by 1 ± T5. If the ratio falls within this region, then the filters 

are similar The measure Ms is given by: 

M8   =   Y,m   where   £(j) = ( X'   1-T5 < ^f^ < 1 + T5 (%) 
J~[ { 0,   otherwise 

Note that, in general, the filter having the maximum probability weight is not guaranteed to 

have the minimum likelihood quotient, but the ratio -^ provides insights into the similarity or in- 
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distinguishability of the filters. The likelihood quotient, LMi, would typically be less than any other 

Lj value since the filter associated with M4 is currently selected by the MMAE as the best match to 

truth. However, with the measurement noise covariance, Rj, as the parameter, Aj= HjPj Hj+R, 

is heavily influenced by R, when the bank is far from truth (as in the case of medium and hard 

moves being desired). Therefore, Lj = rjAj1^, which utilizes AJ1, will tend to be smaller than 

LMi for filters assuming Rj > Rt and larger than LMi for filters assuming R^ < Rt (excluding 

the case when LMi = Lj). This motivates the symmetric threshold tests shown in Equations (96) 

and (97). The motivation for using LMA in the ratio versus the minimum Lj value is that many of 

the decisions used in this algorithm (soft moves, contractions and expansions) are centered around 

the filter associated with M4. 

The threshold, T5, must be determined empirically using the same method discussed below 

Equation (87) for the selection of threshold T\. This measure indicates a lack of variation in the filter 

models, and by simply counting the number of similar filters, decisions can be made concerning the 

appropriate harshness of an intended bank movement. A sequential set of decisions have been made 

(with sequential precedence given to move decisions and then expansion/contraction decisions, as 

discussed previously), indicating a desire to move the bank as illustrated in the flowchart in Section 

3.1.4. The basic concept is that, if all the filters are a similar match to truth and a decision to move 

the bank has already been made, then the harshness of this move should be hard versus medium or 

soft. This need for a hard move is best illustrated in Figure 14 on page 61, in which all the filters 

will tend to have similar likelihood quotients. This logic mimics that used with measure M^ and, 

at first look, it appears that the measures are redundant. However, empirical analysis indicated that 

both are necessary to account for the various test cases used in this study. In other words, given that 

all the filter models are far from the truth model, it is sometimes easier to detect that all the filters 
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are bad and sometimes easier to detect that all the filters are similar to each other The forthcoming 

flowchart will indicate that a logical OR allows these two measures to be combined. 

Moderately Similar Filters: The last measure is almost identical to measure M8, and its use 

is very problem-dependent. In this case, the number of "moderately similar filters" in terms of 

moderately similar likelihood quotients for each filter is determined. 

Mo   =   Tm   where   £(j) = ( X«   l "U ~ ™^? ~ l + Te (97) 
j^ [ 0,   otherwise 

This measure simply allows the designer to incorporate medium sized moves rather than being 

limited to hard and soft moves (see discussion in Section 3.1.4). The basic concept parallels mat 

used with measure M8 in that, if all the filters are a moderately similar match to truth and a decision 

to move the bank has already been made, then the harshness of this move should be medium versus 

soft. This flexibility was found useful for the test cases used in this research. The threshold, T6, 

must be determined empirically (see methodology on page 70) but will always be greater than T5. 

If T6 is less than T5 (T6 < T5), then a given filter could fall in the counterintuitive category of being 

deemed "similar'' without being deemed "moderately similar''. 

3.1.4  Algorithm Description 

The previous sections introduced the information exploited by the density algorithm and intro- 

duced some of the logic used for decision making. This section will focus on the logic flow of the 

decisions, beginning with the methods exploiting the information contained in measures Mi - M6 

and explained under the Main Routine subsection. These measures are needed to make the first level 

of the moving-bank decisions such as move left, move right, expand, and contract. This discus- 

sion is followed by the Move Subroutine subsection, which explains the use of measures M7 - M9 
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needed to determine the appropriate harshness of an intended bank movement. Each major event or 

decision shown in the flowcharts is labeled with a number to help the reader relate the discussion 

below with the figures. A flowchart is not presented for the subroutine Redistribute since the logic 

flow is quite simple and a written discussion should suffice. 

3.1.4.1 Main Routine 

The main routine is depicted in Figure 21 and by virtue of the order of the decision blocks 

(diamond-shaped blocks), movements are given order precedence over contractions and expansions. 

Recall the discussion on page 71 which explained that the process used to develop the algorithm 

led to giving bank movements precedence over contractions and expansions. This choice is nothing 

more than a judgment made by the author and not based on any criteria for optimality, nor is it 

considered necessarily superior to the method of giving contractions and expansions precedence 

over movements. Simply stated, a determination was made to proceed with the decision structure 

illustrated in Figure 21 recognizing that other methodologies were equally viable options. 

1. Form Measures: Calculate measures Mi - Me of Section 3.1.3 used in the main routine. 

2. Check for Move Left: The logic used here combines two measures with a logical AND, 

along with a check that the bank is not already at the left end of the parameter space. Consider the 

situation depicted in Figure 22, where a move to the left is desired. The filter associated with the 

maximum density value is at the left edge of the bank =» M2 = 1. Also, considerable variation 

Of the density samples exists => M5 > T\. Finally, the parameter value associated with filter 1 is 

not equal to the minimum allowable value for the parameter (a_l ^ a_min). All three requirements 

must be met to deem that a movement to the left is needed, as shown by the following IF-THEN 

statement: 

IF    (M2 = l    &   M5>Ti    &   a_l^a_min)    THEN   (Move Left) (98) 
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Figure 21. Density Algorithm Main Routine 
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Figure 22. Move MMAE Bank to the Left 

A decision to move the bank based solely on measure M2 or M5 would be victim to some 

special cases. First, the true parameter value may be centered in the filter bank (in terms of the 

filter-assumed parameter values), but a single noise sample could cause one of the filters on the 

edge of the bank to become the filter with the largest density sample momentarily, i.e., M2 = 1 or 

J. A movement would not be desired based solely on measure M2, and by also recognizing that the 

variation of the density samples is insufficiently large, an undesirable movement would be prevented 

under such a circumstance. Second, measure M5 does not indicate which direction to move the 

bank, but simply that a move is needed. The direction information is found in measure M2, leading 

to the natural combination of these two measures. 

3. Set Action to Move Left: A flag is set indicating a move to the left; so the subroutine Move, 

which is about to be called, will know which direction to move the bank. 

4. Check for Move Right: The concepts and ensuing logic are identical to those for decision 

block 2, Check for Move Left with the following exceptions. First, the filter associated with the 

maximum density sample must be at the right edge of the bank => M2 = J. Second, the parameter 

82 



value associated with filter J must not be equal to the maximum allowable parameter value (a_J ^ 

a_max). The IF-THEN is stated as 

IF    (M2 = J   &   M5>Ti    &   a_J^a_max)    THEN   (Move Right) (99) 

5. Set Action to Move Right: A flag is set indicating a move to the right; so the subroutine 

Move, which is about to be called, will know which direction to move the bank. 

6. Call Move: Call the subroutine Move, which will be discussed in detail presently. 

7. Call Redistribute: A move, expansion or a contraction will establish a new set of poten- 

tial [ai, a2,..., aj] values in parameter space. Given that one of these three operations has been 

executed, call the subroutine Redistribute to ensure that the newly assigned parameter values for 

the filters lie within the admissible region of the parameter space. It may seem unlikely that a bank 

contraction would lead to parameter values outside the admissible parameter region. However, the 

method used to contract the bank may lead to a simultaneous move left or right, since the bank is 

centered on the parameter value associated with the filter having the maximum probability. This is 

discussed further under item 9, Contract the Bank. Similarly, item 11, Expand the Bank, explains 

that a bank movement may be induced by a bank expansion. One obvious alternative would be to 

perform pure contractions and expansions about the current center of the bank (with movements 

taking place only when dictated by a completely separate move logic), eliminating any bank move- 

ment. 

The newly assigned parameter values for the left and right ends of the bank (ai and aj) are 

simply compared to the minimum and maximum allowable parameter values (a,,,^ and amax) re- 

spectively. If either newly assigned endpoint falls outside the admissible parameter space, then it 

is assigned the appropriate value of a^ or amax. This relatively simple operation is depicted in 

Figure 23. Notice that the breadth of the parameters spanned by the bank is maintained in the redis- 

tribution process.    The parameter breadth is defined as the difference between the maximum and 
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Figure 23. Redistribute Filter Bank 

mmimum filter-assumed parameter values in each dimension. 

Breadth = aj - ax (100) 

This implies that all the [ai, a2,... aj] values are redistributed (moved left or right) by the same 

amount rather than adjusting only those parameter values that have fallen outside the admissible pa- 

rameter space or using some other criteria to rediscretize all the parameter values within the bank. 

Simply adjusting only those parameter values that have fallen outside the admissible parameter space 

would result in a contraction of the bank, which is not warranted at this time. Rediscretizing the 

parameter values based on other criteria is employed by various versions of the density algorithm, 

including the density algorithm combined with an on-line Sheldon discretization described in Sec- 

tion 3.1.5.4 and the density algorithm combined with the probability based discretization method 
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described in Section 3.3. The relative merits of the ad hoc method presented here versus the redis- 

cretization methods based on other criteria are discussed in Chapters 4 and 5. 

8. Check for Contraction: Note in Figure 21 that this check is only performed if checks for 

both leftward and rightward moves have negative results. Recall the discussion in Section 3.1.3 

which explained that, if the filter-assumed parameter values are too coarsely discretized about the 

true parameter values, then all the density samples relative to the maximum sample will tend to 

be small and thus M6 will be small, i.e., the number of counted filters will be close to one. This 

would warrant a contraction of the bank, as shown in Figure 24. Measure MQ is simply compared 

to threshold value T2, and if M6 is less than T2 (M6 < T2), then a contraction is performed. 

9. Contract the Bank: Notice in Figure 24 that the bank is contracted about the parameter 

values associated with the filter having the maximum probability, i.e., centered around M4. The idea 

is that this filter's assumed parameter values provide the best guess, among those in the bank, for 

the true parameter values. Therefore, it is the logical choice for the center of the bank in parameter 

space. This is no guarantee that this method of contraction, which is symmetric about the filter 

associated with M4, is optimal. Alternatively, if M4 is not in the center of the current filter bank 

(prior to contraction), then the asymmetry that exists in the current bank could be applied to the 

newly contracted bank However, applying this asymmetry does not guarantee optimality either. 

Therefore, the symmetric method of centering around M4 was chosen for simplicity. The next step 

is to determine the remaining parameter values for the filters within the bank by first determining 

the amount of contraction desired. 

The underlying concept for choosing the new filter-assumed parameter values in the bank is 

based on human eyesight. Specifically, it is desirable to give the MMAE both a foveal and peripheral 

view of the parameter space. The foveal view would consist of several filters (say 3 out of 5 filters) 

focussing on the current best estimate of the parameter values, as shown by example in Figure 25. 
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Figure 24. Contraction of Filter Bank 

This is accomplished by centering around the maximum probability filter as mentioned above. Since 

the foveal view filters would be relatively close to each other with respect to their assumed parame- 

ter values, these filters would tend to have density samples that are close in magnitude and contribute 

to the number of "counted" filters via measure M6 (recall Equation (88) and Figure 17). Further- 

more, the maximum density sample is most likely to be associated with one of these foveal filters. 

This motivates contracting the bank such that the number of counted filters consistently matches the 

number of desired foveal filters. The peripheral view of the MMAE bank would consist of the re- 

maining filters (say 2 out of 5 filters) which would assume parameter values far from the current best 

parameter estimate. These filters will not be counted via MQ since their associated density samples 

will be small compared to the maximum density sample. These peripheral filters are lying in wait 

for a dramatic change of the true parameter values and give the bank the flexibility to react to such a 

change. Apply these thoughts to the following example. Let J = 5 and assume Figure 26 represents 

the density samples associated with the five filters in the bank prior to a desired contraction. Notice 

that the number of significant or "counted" densities is one, M6 = 1. Now let the bank undergo a 
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< Density Samples 
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Parameter Values 

Figure 25. Filter Bank After Contraction 

< Density Samples 

a,      a, a, a4 a5 

Parameter Values 

Figure 26. Filter Bank Prior to Contraction 
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contraction followedby the propagate and update cycles of the Kaiman filters. The contrived density 

samples for this example might appear as in Figure 25 where the number of "counted" filters has 

increased from Me = 1 to M$ = 3. Based on these observations, the following method was 

developed which allows the designer to choose the number of desired foveal or counted filters. 

Contraction will be applied to the filters in a uniformly spaced parameter range, where the 

uniform spaced parameter range refers to the integer numbering assigned to the filters (1,2, 3,...J). 

The spacing here is clearly uniform despite the highly nonuniform spacing in the actual parameter 

space that may appear between the parameter values assumed by the filters. This is easier to under- 

stand by looking at the contrived example shown in Table 1, in which the parameter values are not 

uniformly spaced but the numbers assigned to the filters obviously are uniformly spaced. Recall 

that a contraction decision is based on measure M6 which takes on integer values in the range [1,J]. 

Therefore, it makes sense to work in the uniform parameter space when determining if a contraction 

is needed and to determine the amount of contraction. Additionally, from a design standpoint, it 

makes sense to designate the number of desired filters (an integer value) in the foveal and peripheral 

views of the MMAE. 

Table 1. Uniform and Nonuniform Parameter "Values 

Filter # 1 2 3 4 5 
Parameter \alue 5 10 50 120 150 

Define a contraction factor, K, equal to the desired number of counted (foveal) filters and 

applied in the uniform parameter space to determine new uniform parameter values for the filters, 

which are then converted to actual filter-assumed parameter values via interpolation or extrapolation 

described presently. As previously stated, the new contracted uniform values, au, are found by 

centering around the filter-assumed parameter value having the maximum probability using the 



following equation: 

[aui, au2, • • •, auJ] = [M4, M4,..., M4] + 

J-l J-3 J-5 J-J 
K- 2(J-1)'    2(J-1)'    2(J-1)'     '2(J-1)' 

J-5       J-3       J-l 
'2(J-1)'2(J-1)'2(J-1) 

(101) 

The first bracketed term in Equation (101) is just a J-dimensional vector with each element equal to 

M4. The second bracketed term in Equation (101) will always have the form [-±,..., 0, ...,£], 

resulting in minimum and maximum uniform parameter values of a^i = M4 - f and a« j = M4 + f 

respectively. Therefore, the new uniform parameter breadth is given by a^j-a^i = (M4 + §) - 

(Af4 - |) = K and supports the design goal of maintaining a set number of counted (foveal) filters. 

For example, the case of J = 5, M4 = 4 and a desired foveal view of 3 filters, 

[4,4,4,4,4]+3. I -I 0 I I 
2'    4'   '4'2 

= [2.5,3.25,4,4.75,5.5] 

Notice that for this example, the newly contracted parameters only span a uniform range of 5.5 - 

2.5 = 3 (equal to K) versus the original span of 5 -1 = 4 (equal to «+1). Likewise, the actual filter- 

assumed parameter values found via interpolation and extrapolation will span a contracted range. 

Notice that the method used here will always result in a contraction of the bank to -^ of the original 

bank span, regardless of the measure M6. Initially, consideration was given to incorporating M6 

into the contraction process such that smaller values of M6 (indicating a very coarse discretization 

about the true parameter values) would induce larger amounts of contraction. However, performance 
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analysis found that a single level of contraction was sufficient, since the bank rarely required a series 

of contractions, and this single level of contraction was used for simplicity. 

The contraction method just described is used in the final implementation; however, an alterna- 

tive method is recommended for consideration. Rather than uniformly spacing all of the filters over 

the newly contracted bank span, one might choose to group the foveal filters tightly in the center of 

the new span and place the peripheral filters farther to the outside. One such approach is illustrated 

in Figure 27 for a five-filter example.  Notice that the parameter values for the three foveal filters 

overall span 

foveal filters —| 

Figure 27. Alternative Spacing of New Parameter "Values for Contractions 

are evenly spaced over the distance "d" in the uniform parameter space and the peripheral filters 

are spaced a distance "d" from the outer foveal filters. In general, the number of desired foveal fil- 

ters is simply J - 2. Recall that the contraction is performed in the uniform parameter space prior to 

conversion to the actual parameter space, which is discussed in the next paragraph. Therefore, the 

distance "d" is an integer value equal to the number of desired foveal filters (J - 2) and the over- 

all span is equal to 3d. This approach is recommended for its simplicity, and many alternatives are 

possible. 
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The next issue is, how to convert from the uniform filter parameter spacing to the actual filter- 

assumed parameter values. The solution is to plot the uniform filter parameter values versus the 

actual filter-assumed parameter values, as shown in Figure 28. The contraction will actually take 

place in the uniform parameter space as described above, resulting in non-integer values within this 

space. Next employ linear interpolation and extrapolation to determine values in the actual filter- 

assumed parameter space corresponding to the non-integer values. Consider the following example 

contrived to illustrate the interpolation process. Specifically, use the filter parameter values shown 

in Table 1 and assume the contraction process requires a new uniform parameter value of a„i = 2.5. 

The mapping of the uniform parameter values to the actual filter parameter values is shown in 

Figure 28 including the new filter-assumed parameter value of ai = 30 (shown as an "0") which 

corresponds to the new uniform parameter value of a„i = 2.5. Similarly, notice for the example 

presented in the previous paragraph that a„5 = 5.5, which is outside the current parameter span and 

requires extrapolation in the uniform parameter space. Linear extrapolation is applied for simplicity 

and provides adequate results for the relatively short extrapolation distances required here. For 

instance, the maximum extrapolation distance required in this example is a„5 — J = 5.5 — 5 = 0.5. 

Note that this method of contracting the bank may additionally result in a small move to the left or 

the right. This is caused by centering on the filter-assumed parameter value having the maximum 

probability unless the associated filter is currently in the center of the bank. The example above 

illustrates this attribute since centering around M4 = 4 results in a uniform parameter value of 

a^s = 5.5 and thus actual parameter values which are to the right of the current bank. 

Finally, a call to the subroutine Redistribute is made to ensure the new filter-assumed parameter 

values lie within the admissible parameter range. The vector au is independently obtained for each 

dimension of the parameter vector 
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Figure 28. Uniform Versus Actual Filter-Assumed Parameter Values with Interpolation 
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10. Check for Expansion: Recall the discussion in Section 3.1.3, which explained that if the 

filter-assumed parameter values are too finely discretized about the true parameter value, then all 

the filters will tend to have density samples of the same magnitude and thus M6 will be large, 

i.e., close to the number of filters, J. This would warrant an expansion of the bank as shown in 

Figure 29. Measure Me is simply compared to threshold value T3 and if M6 > T3, then an expansion 

is performed. Also, recall the need to check for a move prior to checking for an expansion (or 

contraction), as discussed in Section 3.1.3. The sequence of decision blocks shown in the flowchart 

(Figure 21) ensures the move decisions have precedence over an expansion. 

a min a max 

Current Parameter 
Span 

M4 

M 4 = location of filter in 
bank with max probability 

Center around   M4 

Figure 29. Expansion of Filter Bank 

11. Expand the Bank: Much of the same rational used to contract the filter bank applies to 

expanding the bank. The method for expansion is simpler in that conversion from the uniform para- 

meter space to the actual parameter space is not performed. Consideration was given to performing 

expansions in the uniform space and then converting to the actual parameter space, as done with 
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contractions. However, this would require extrapolations over potentially large distances in the uni- 

form space, leading to poor results that do not adequately represent the desired expansion. 

An expansion factor is simply calculated as 

Expansion Factor e = 
M6 

# of desired counted (foveal) filters 
(102) 

where the denominator is now motivated by the designer's will to keep a set number of filters in 

the foveal view of the moving-bank MMAE, and the numerator is simply the number of filters 

currently in the foveal view. This ratio shows that if too many (more than desired by the designer) 

of the filter-assumed parameter values are tightly packed around the true parameter values, then the 

bank will expand until the desired number of filters reside in the neighborhood of truth. The new 

filter-assumed parameter values are calculated using 

[af^aTV.^an   =   [^Mi,aMi,...^Mt] + 

(aj - ai) • e ■ - 

J-5 J-; 
'j-i'j-: 

j-i 

j-i' 

S  J-1" 

L'J-lJ 

J-3 
1' 

J-J 
J-1' 

(103) 

which is easily understood from the following description. Multiply the current breadth of the bank, 

[aj - ai], times the expansion factor, e, to obtain an expanded breadth of the bank. Next, multiply 

by the uniform spacing based on the number of filters and given by 

1 r j_i J-3 J-5 J-J J-5  J-3  J-1" 

2 J-I' J-1' J-1' 'J-1' J-1'J-1'J-1 
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to obtain an expanded spacing. Finally, add these products to a vector of the parameter value asso- 

ciated with the filter having the maximum probability, aM4, to obtain a new set of parameter values 

for the filters, [a?ett\ a£eu',..., a?6™], centered around aM4. As with contractions, this method of 

expanding the bank may additionally result in a small move to the left or the right. 

A call to the subroutine Redistribute is made to ensure the new filter-assumed parameter val- 

ues lie within the admissible parameter range. The J-dimensional vector, [a?e™, a£ew,..., ay*"], is 

independently obtained for each dimension of the parameter vector If only one dimension of the 

parameter space (or at least not all of the dimensions) requires an expansion, then it seems unrea- 

sonable to expand every dimension of the parameter space. Therefore, systematically checking and 

implementing expansions in each dimension independently provides the flexibility needed to ex- 

pand in the appropriate dimensions. Additionally, this method is straightforward and a reasonable 

first approach. Alternatives to componentwise expansion decisions in the original coordinate sys- 

tem of the parameter space might also be pursued (i.e., rotate into principal axes and then apply 

componentwise expansion decisions), but this was not done in this research. 

5.1.4.2 Move Subroutine 

The subroutine Move is called by the main routine when a bank movement is warranted. Fig- 

ure 30 shows the decision making process used in this subroutine. Each major event or decision 

shown in the flowchart is labeled with a number to help the reader relate the discussion below with 

the figure. 

1. Form Measures: Calculate measures M7 - M9 of Section 3.1.3 used in the subroutine. 

2. Check for Hani Move: Recall from the discussion of measure M7, that if all the filters are 

a bad match to truth and a decision to move the bank has already been made, then the harshness of 

this move should be hard versus medium or soft. This scenario is handled by checking if M7 = J. 
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Figure 30. Density Algorithm Move Subroutine 
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Similarly, recall from the discussion of measure M8, that if all the filters are a similar match to truth 

and a decision to move the bank has already been made, then the harshness of this move should be 

hard versus medium or soft. This scenario is handled by checking if Ms = J. The resulting logic is 

expressed as 

IF    (M7 = J   OR   M8 = J)    THEN   (Move Hard) (104) 

3. Check for Medium/Sofi Move: Recall that measure M9 allows the designer to incorporate 

medium sized moves rather than being limited to hard and soft moves. The logic is conditioned on 

M7 ^ J AND Ms 7^ J and given by 

IF    (M9 = J)    THEN   (Move Medium)   ELSE   (Move Soft) (105) 

indicating that, if all the filters have moderately similar likelihood quotients then a medium move 

would be better than a soft move. 

The three types of bank movements are illustrated in Figure 31 as soft, medium and hard right. 

Moves to the left are performed in the same way. The methods used to determine the new parame- 

ter values for the filters are ad hoc and based on the concepts described below. In general, these 

three levels of movement were motivated by analysis of various test cases in preliminary stud- 

ies/simulations. Initially, only soft moves were invoked, but in cases in which large parameter vari- 

ations were induced, several soft moves were required and convergence of the filter-assumed para- 

meter values to the neighborhood of the true parameter values was too slow. This motivated the use 

of hard moves which overcame the slow convergence times. However, some of the case studies in- 

duced moderate parameter changes, and a hard move would cause the filter-assumed parameter val- 

ues to overshoot the true parameter values significantly. Therefore, an intermediate move (medium 

move) was pursued. Observation of Equations (91), (96) and (97) for measures M7 - M9 identifies 

the high level of correlation between these measures (particularly measures M8 and M9). Therefore, 

employing all three levels of moves (or adding more levels) is highly problem-dependent. Empirical 
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Figure 31. Types of Bank Movements (Soft, Medium, and Hard) 
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analysis through preliminary studies should indicate if more than one level of movement is needed. 

If so, employ measure M7 to discern between two movement levels. If more levels are required, 

continue adding measures M8, M9, Mw, (just like M9, but with a larger threshold, T7), and so on 

to discern between each intermediate level of movement. The only difference among measures M%, 

Mg, Mio,... is the value of the thresholds T5, T6, T7,..., which are empirically determined. 

Note the use of scalar notation for the parameter values indicating that each dimension of 

the parameter vector is processed independently. First, it may be necessary to only move in one 

dimension of the parameter space (or at least some but not all of the dimensions), and working in 

one dimension at a time permits moves in any or all of the p dimensions. Second, the methods used 

to determine the new parameter values are easily implemented in a single dimension. 

4. Sofi Move: A soft move is intended to allow the bank to react to small changes in the true 

parameter value or to hone in on the true parameter value given that it is already within the bank's 

parameter span. The bank is centered around the filter-assumed parameter value currently having 

the maximum probability, as this is the best guess, among those in the bank, for the true parameter 

value at this time: 

ani = a«, (106) 

where &new represents the new parameter value. The parameter breadth = [aj - ai] of the bank is 

maintained since there is no indication either to expand or to contract the bank. The new parameter 

endpoints of the bank are determined by placing a filter either side of the new parameter center at a 

distance of one-half the breadth. 

a?7 = aM4T(aj-a!)/2 (107) 

The remaining filters take on parameter values uniformly distributed between the new center value 

and the new endpoints. Notice that, under this methodology, there will exist some overlap between 

the newly placed parameter values and the old parameter values since the center of the new bank 
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came from the old bank. One alternative to uniformly distributing all the remaining parameter values 

is to preserve the parameter values in the overlap region and uniformly distributing all the others. 

This methodology was considered late in the research and time did not permit complete analysis of 

its performance. It is anticipated that preserving the parameter values in the overlap region would 

be superior to uniformly distributing all the parameter values, since the preserved filters will not 

require the initialization needed to "start up" those filters taking on new parameter values (see 

Section 3.1.5.2) and can avoid transient behavior in their state estimates often encountered by newly 

initialized filters. 

5. Medium Move: A medium move allows the bank to make a slightly larger step left or right 

as the overlap from the old bank to the new bank is reduced to a single filter-assumed parameter 

value. Specifically, for the move to the right shown in Figure 31, the new left end of the bank takes 

on the parameter value from the old right end of the bank and visa versa for a move to the left. 

eQew   =   aj       (move right) 

a?6™   =   ai       (move left) (108) 

The breadth of the bank is maintained allowing the new right (or left) end of the bank to be calculated 

as 

a%ew   =   aj + (aj-ai) = 2aj-ai        (move right) 

a?e™   =   ai-(aJ-a1) = 2ai-aj       (move left) (109) 

The remaining filters take on parameter values uniformly distributed between the new endpoints. 

Unlike the soft move, there is no overlap of the old and new parameter values except for one end- 

point. Therefore, some method such as uniform distribution is required. Other ad hoc distribution 

methods include logarithmic spacing and monitoring estimation accuracy, but only one method is 

implemented here [23,49,68,69]. Of course, Sheldon's cost minimization method [68,69] is not 
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ad hoc and is utilized through the combination of the density algorithm with Sheldon discretization 

presented in Section 3.1.5.4. 

6. Hard Move: A hard move is actually a combination of amove and expansion, as shown in 

Figure 31. The rationale for this combination is the desire to extend the bank's parameter span over 

a larger range than that obtained by a medium or soft move, while simultaneously maintaining the 

single parameter value overlap described for a medium move. This single parameter value overlap 

is motivated by the conservative nature of the algorithm designer who would rather systematically 

move right or left toward the true parameter value rather than making huge leaps, resulting in gaps 

between the old and new filter bank parameter values. In order to satisfy both desires, the bank 

has to move and expand. The ad hoc expansion process described in Section 3.1.4.1 could be used 

to determine the amount of the expansion associated with the hard move, but an alternative ad hoc 

method discussed here is used and based on the following concepts. Neither method is guaranteed to 

be superior to the other, and both deserve equal consideration in lieu of some other optimal method. 

One endpoint is again governed by Equation (108) to ensure a single filter overlap 

a™ew   =   aj       (move right) 

&Y
W   =   &i       (move left) (110) 

while the other endpoint is a function of the maximum or minimum allowable parameter value 

(amax or amin). Consider the case of a move right, with the understanding that moves to the left 

are accomplished in an analogous manner (i.e., use amax versus a^ and swap the aj's and ai's). 

One method is simply to set the new right endpoint, a%ew, equal to a,^, resulting in the maximum 

amount of expansion possible. Preliminary studies indicated that this level of expansion was too 

severe for this problem and resulted in too coarse of a discretization. Another idea is to choose the 

new right endpoint, a%ew, somewhere between the maximum allowable parameter value, am^, and 

the old right endpoint, aj. This gives the designer control over the amount of expansion by selecting 
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how close the new right endpoint lies to amax versus the old aj. The method used here to select the 

new right endpoint, a£e™, is to add some fraction of the distance between the old left endpoint, ai, 

and the maximum allowable parameter value, amax, to the old left endpoint, aJ; as given by 

ay«0   =   nj + (iw-ai)/2       (move right) 

af™   =   ai - (aj - a^)/2       (move left) (111) 

Notice that, as the bank moves closer to a,™« or «w, the amount of expansion decreases. The 

fraction of 1/2 chosen here was arbitrarily determined from preliminary studies. The designer can 

decrease this fraction (< 1/2) to decrease the amount of expansion for the problem at hand or increase 

this fraction (> 1/2) to increase the amount of expansion. 

Direct comparison of this expansion method versus the one in Section 3.1.4.1 was not con- 

ducted due to time constraints. Additionally, a large expansion could be accomplished in place of 

the combined hard move / small expansion presented here. However, given an indication mat the 

true parameter value is to the left or right of the current filter-assumed parameter values, a move 

in the appropriate direction combined with a small expansion makes more sense than simply ex- 

panding the bank to a coarse level of discretization. In contrast, if there is no indication of which 

direction is best to move the bank, then a simple expansion would be better: Since the decision- 

making logic first checks for a clear indication of an appropriate move direction before resorting to 

simple large expansions, it accounts for all of these cases. 

3.1.5  Performance Enhancements 

A short study was conducted to evaluate the performance of the density algorithm. The results 

of this study motivated the pursuit of several performance enhancements which are detailed in the 

following paragraphs. It should be noted that none of the enhancements are necessary for the algo- 

rithm to function, but some of them were critical for good performance on the example problem used 
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in this study. These critical enhancements include Dead Zone for Soft Moves and a specific form of 

Initialization of Newly Declared Filters, which are anticipated to provide significant improvements 

in performance for any application of the algorithm. The two other performance enhancements 

presented in this section include an ad hoc method identified as Decision Delays and the on-line 

version of Sheldon's cost minimization algorithm referred to as On-Line Sheldon Discretization. 

3.1.5.1 Dead Zone for Soft Moves 

The density algorithm as described to this point made unnecessary soft moves in the presence 

of true parameter variations. Given that a true parameter changed, the bank would move toward and 

eventually encompass the true parameter within the bank's parameter span. Once the true parameter 

was encompassed, an additional soft move might be needed to center the bank on the true value. 

However, in many cases the algorithm induced multiple soft moves that would overshoot the true 

parameter and even oscillate about this true value with multiple soft moves to the left and right. The 

result was erratic parameter estimates that degraded performance. One solution was to implement a 

dead zone near the center of the bank which precluded zsofi move if the filter having the maximum 

probability was within this dead zone. The idea is that, if the bank had converged on the true 

parameter and was, in fact, nearly centered on this true value, then a filter within the dead zone 

would have the greatest probability. If this was not the case, then a filter outside the dead zone 

would have the greatest probability and an additional soft move would be warranted. 

The ensuing logic is given by 

IF    (Deadl < M4 < Dead2)    THEN   (Don't Make Soft Move) 

where Deadl and Dead2 are integers defining the dead zone and must be determined empirically. 

If the dead zone is made too wide, such as by placing more than half the filters in this zone, then 

the algorithm will become sluggish in its convergence to the true parameter Empirical analysis 
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showed that the dead zone is more effective if it is biased towards the right side of the filter bank 

(i.e., larger parameter values) when the parameter of interest is the measurement noise covariance, 

R. For instance, with J = 5 a dead zone of Deadl = 3 and Dead2 = 4 was most effective. This 

biasing towards larger R values is justified in the following discussion. Assume the true scalar 

noise covariance is Rt = 300 and the two elemental filters closest to Rt assume parameter values 

of R = 100 and R = 500. Both elemental filters are equally spaced above and below truth in terms 

of the parameter values, but the filter based on the larger assumed value of R would tend to receive a 

larger probability weight than the filter based on the smaller R value due to the MMAE's tendency 

to favor the more conservative filter This phenomenon is illustrated with a scalar measurement 

example. Recall that the scalar likelihood quotient 

i,*) = ^ (U2> 

where 

A^HjPjHj + Rj 

indicates the "correctness" of the filter with respect to truth, and a large Lj implies that the filter 

is a bad match to truth. Consider the following examples in which small and large Rj values are 

referenced with respect to truth: 

Example A: Rj small =*• Aj small =^ Lj(U) large ifrj(**) is "medium" or "large" 

versus 

Example B: Rj large =» Aj large =*• Lj(U) large only if rj(U) is "large" 

These examples imply that a much larger residual squared, r^(U), is needed to make the filter in 

example B look bad and receive a smaller probability weight to the same degree as the filter in 

example A: thus the MMAE's tendency to favor the more conservative filter The ensuing blending 

of the parameter estimates given by Equation (51), which is repeated here, will result in a biasing 
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high of the parameter estimates: 
j 

This concept requires additional research both for validation and for determination of an adequate 

method to counter it effects, if that is appropriate. 

3.1.5.2 Initialization of Newly Declared Filters 

The idea of initializing the bank was presented on page 42, which proposes using the blended 

state estimates as initial conditions for the filters that have newly declared parameter values. Specif- 

ically, only the elemental filters not already operational in the bank prior to a move, expansion, or 

contraction are initialized with XMMAE(*+)- This method is highly recommended to remove un- 

wanted transients that may result if the filters are not initialized with XMMAE(^). In particular, 

consider the alternative in which each elemental filter that has newly declared parameter values 

chooses to propagate its appropriate state estimate, Xj(tt). This is effectively ignoring the infor- 

mation contained in the blended state estimate, XMMAE(*<"), which is the current best guess for the 

true state vector In fact, XMMAE(*+ ) is more likely to be in the neighborhood of the true state vector 

than Zj(tf), particularly since £j(t+) is based on a parameter value that is currently deemed to be 

unworthy of being included in the bank. An obvious exception is when a filter assumes parameter 

values that match truth very well, in which case, this filter is unlikely to have just been assigned a 

new parameter vector Clearly, when initializing a Kaiman filter, it is best to use an initial condition 

that is closer to truth than one that is far away, since it will take more sample periods for the filter 

initialized with a poor initial condition to converge to the true state values. 

Recall the IMM approach discussed in Section 2.2.2 which proposed restarting all the filters in 

the bank after every sample period, given that the probability state transition matrix in the standard 
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MMAE structure equals identity [5,32]. At first, it may appear that Initialization of Newly Declared 

Filters is nothing more than applying the IMM approach given that the probability state transition 

matrix equals identity. However, this version of the IMM approach restarts all the filters in the bank 

after every sample period, versus restarting only those that have newly declared parameter values. 

The difference between these two approaches may seem subtle, but given a coarse discretization 

of the filters in the MMAE, the blended state estimate, XMMAE(*+), could vary significantly from 

the elemental state estimates, x,(it). Therefore, re -initializing an operational elemental filter with 

xMMAE(*i") via IMM versus propagating the appropriate value of x^it) could be significant. This 

version of IMM was not implemented in this research because of its tendency to degrade parameter 

estimation in lieu of enhanced state estimation. 

3.1.5.3 Decision Delays 

Decision delays were implemented to reduce erratic bank movement. A simple yet very ad 

hoc method allows the designer to choose the number of sample times mat must pass before a new 

decision (move, expand or contract) can be made. These delays allow the filters to settle out any 

transients that result from having just taken on new parameter values. A negative aspect of this 

method is the sluggishness induced into the decision making process when attempting to react to a 

change in the true parameters. A reasonable process for selecting the amount of decision delay is to 

simulate test cases with decision delay values ofO, 1,5 and 10 sample periods. Larger delays may be 

considered but will likely be too detrimental. Evaluate the performance in each case and select the 

delay time that provides the best trade-off of parameter variation detection delay versus minimizing 

erratic bank changes (moves, expansions or contractions). The aim of this dissertation is to exploit 

information available in the MMAE, in a more systematic and theoretically sound manner than 
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previous methods, to make good decisions for bank motion and expansion/contraction. Therefore, 

the use of ad hoc methods such as mis should be avoided when possible. 

3.1.5.4  On-line Sheldon Discretization 

The density algorithm provides intelligent decision making for movement, contraction and ex- 

pansion of the bank. However, it relies heavily on uniform spacing of the parameter values within 

the newly declared parameter span of the bank. This uniform spacing is not inherent in the algo- 

rithm, and this section proposes a combination of the basic density algorithm with a discretization 

technique that does not rely on simple uniform spacing of the parameter values. A discretization al- 

gorithm developed by Sheldon [68,69] provides a method to choose parameter values intelligently 

for an MMAE bank, given minimum and maximum values for each scalar parameter An obvious 

combination is to use the density algorithm to determine the endpoints for the parameter values and 

Sheldon's algorithm to discretize the filter-assumed parameter values between these endpoints. 

Section 2.2.3.2 introduced the basic algorithm developed by Sheldon [68] and the concept of 

applying a finite horizon to the iterative relationship given by 

r,(ii)= CTj(ti-1)jO.T + G„QOG£ 

Recall that the finite horizon is used in lieu of having steady state Kaiman gains available. One case 

where steady state gains are not achievable is for problems with nonlinear system models leading 

to the use of extended Kaiman filters or other approximate nonlinear filters. Additionally, if the 

problem is defined by a linear or linearized system model mat is astable or unstable, men steady 

state gains are not achievable. The length of the finite horizon is motivated by the designer's physical 

insights into how many sample periods into the future the discretization algorithm should look when 

performing its vector minimization, i.e., what period of time into the future makes physical sense in 

the specific problem context as a period of current concern for performance. 
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The next issue is how to incorporate either the basic Sheldon algorithm or the modified Shel- 

don discretization (i.e., Sheldon's basic algorithm and the use of a finite horizon) with the basic 

density algorithm. The following method can utilize either version of the Sheldon algorithm, but 

emphasis is placed on the modified version since it will be applied to the example problem in Chap- 

ter 4. The Sheldon algorithm requires the designer to specify the admissible parameter region, i.e., 

minimum and maximum values for the elements of the parameter vector a. Obviously the number 

of filters in the MMAE and the underlying basic system model must also be specified, but the focus 

here is on the range of parameter values used in the discretization process. The density algorithm 

provides precisely this information when it moves, contracts and expands the MMAE bank based 

on its decision logic. Specifically, the density algorithm will provide the endpoints of the newly 

declared parameter range, and either version of Sheldon's algorithm can be used to discretize the 

filter-assumed parameter values between these endpoints. This essentially converts Sheldon's algo- 

rithm from being used exclusively a priori off-line to a new on-line discretization method. There 

are, of course, some implementation issues associated with on-line use. 

Sheldon is quick to point out that is algorithm his computationally intensive [68], and adequate 

minimization of the cost functional would be cumbersome if performed at every sample time. 

This motivated the development of a look-up table concept which allows a priori application of 

Sheldon's discretization to a wide range of parameter regions, i.e., several choices of parameter 

value endpoints. The look-up table is accessed on-line to provide the best choice for the filter- 

assumed parameter values in a Sheldon cost minimization sense. Clearly the look-up table has a 

finite number of entries; so the entry with endpoints that are closest to the endpoints dictated by the 

density algorithm is used. The look-up table process requires minimal computation time and can be 

performed at every sample time. 
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The on-line Sheldon algorithm with a finite horizon was implemented using MATLAB [41 ] for 

the example problem given in Chapter 4. MATLAB code was developed and written to generate the 

required parameter sets, including a formatted look-up table that can be read into any FORTRAN 

routine [28]. The modified Simpson's rule presented in Appendix B was the numerical integration 

technique used, and the vector minimization was accomplished using MATLAB's constrained op- 

timization techniques which are based on Sequential Quadratic Programming (SQP). Specifically, 

the command "constr" in MATLAB's Optimization Toolbox performs constrained nonlinear opti- 

mization for multivariable functions [40]. The application of the Sheldon algorithm with a finite 

horizon to the fixed-bank MMAE is presented in Section 4.6, and the performance attributes as- 

sociated with the combination of the density algorithm with the on-line Sheldon enhancement are 

presented in Section 4.8. 

3.2 Probability Algorithm 

The second algorithm developed in the research uses the concept of parameter position estimate 

monitoring discussed in Section 2.2.3 in conjunction with a new probability-based discretization 

method. The major contribution lies in the development of the new discretization method, which is 

presented first, followed by the description of the probability algorithm as a stand-alone adaptive 

algorithm driving a moving-bank MMAE. 

The fundamental concept employed by the probability-based discretization method, referred to 

as the PBDM, is to choose the parameter values for the elemental Kaiman filters in an MMAE based 

on the calculation of the probability PX(XJ < T). Recall that each elemental filter assumes a value 

for the parameter vector, a,, and the true parameter vector is identified as at. If any mismodeling 

of the true system is present in the filter model (a,- ^ at), then Xj is the generalized Chi-Squared 

random variable discussed throughout this dissertation and defined by the following quadratic form 
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of the measurement residuals (the difference between zt (U) based on at, and Hf^x,-^) based 

on a,), rj, and their associated filter-computed covariance matrix, A.,-: 

Xj-rJAfr (113) 

The probability calculation, PX(XJ < T), is the probability that the generalized Chi-Squared vari- 

able will lie below a threshold, T. The same mathematics presented so far parallel the discussion in 

Section 3.1.3 under measure M7 which alluded to calculating the above probabilities numerically 

for the new discretization method being presented here. Recall that Xj provides an indication of 

the correctness of a filter in terms of how well the filter-assumed parameter values match the true 

parameter values. Specifically, a value of Xj < m (the measurement dimension) indicates that the 

filter model is a good match to truth, whereas Xj > rn implies a bad match to truth. PX(XJ < T) 

is statistically stating the probability that filter/ is a good match to truth for the threshold value se- 

lected. The new discretization method will exploit this probability information and use it as a basis 

for assigning the parameter values to the filters in the bank. The basic idea of this method will be 

introduced through the following example. 

Consider an MMAE with five filters and the goal of accurately estimating a scalar parameter 

value. One approach would be to assign the filters parameter values such that the filter probabili- 

ties, Pj(U), as calculated by the MMAE using Equation (44) on page 29 would result in the values 

shown in Table 2. These choices will be motivated shortly. The Chi-Squared probability value, 

Pxixj < T)-> associated with each pj value is shown in Table 2. For convenience, the shorthand 

notation Px = PX(XJ < T) will be used in much of the discussion. It is important to recognize the 

Table 2. Example Probability Wues 

Filter # 1 2 3 4 5 
MMAE Probability Wue, p, 0.01 0.24 0.5 0.24 0.01 
Chi-Squared Probability Value, Px{Xi < T) 0.01 0.24 0.5 0.76 0.99 
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difference between the MMAE probabilities, pj, and the probabilities, Px., associated with the Chi- 

Squared variable. These differences will be highlighted in the next paragraph following the moti- 

vation for the chosen values of the MMAE probabilities, pj. Notice that the center filter in the bank 

has a relatively high probability, pj, its neighbors have less probability but still relatively substan- 

tial amounts, and the outlying filters have extremely small pj values. These values are determined 

in an ad hoc fashion, giving the designer significant latitude in choosing how broad or narrow to 

make the filter bank. The motivations for the pj values chosen in this example parallel the thoughts 

presented in the density algorithm discussion of contracting the bank (see page 85). Specifically, it 

is desirable to give the MMAE both a foveal and peripheral view of the parameter space. 

In order to strive for these desired pj values, as calculated by the MMAE, the designer would 

select the Px values shown in Table 2. The values for Px. may seem more important, since they are 

chosen by the designer and used in the PBDM, however, they are motivated by the values shown 

here for pj. Both probabilities give indications of how well each elemental filter matches truth. 

However, due to the structure of the MMAE, the sum of the p/s will always equal one; so a filter 

that is actually a poor match to truth could have a value of pj = 0.9 (indicating that it is a good match 

to truth) simply because it is a better match to truth than all the other elemental filters. In contrast, 

the sum of the Px. does not equal one, in general, and if all the filters are a poor match to truth, then 

all of their associated Px. values would be small. Note that Px. = PX(XJ < T) is a monotonic 

function of T, depicting the cumulative probability associated with Xj taking on values less than 

or equal to T {not a conditional probability that Xj takes on values in a small neighborhood about 

T). The PBDM will select parameter values for the filters such that the desired "correctness" of the 

filter models (in terms of how well the filter-assumed parameter values match the true parameter 

values) will be attained. In other words, the filter-assumed parameter values will be chosen by the 

PBDM such that the Px. values shown in Table 2 (or any other values selected by the designer) will 
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be attained. Sections 3.2.1 and 3.2.2 present the methods used to calculate Px., and Section 3.2.3 

explains the monotonic increase that is apparent for the Px. values along with justification for the 

specific values shown here. The discussion that follows will detail the methodology and necessary 

calculations required to implement the PBDM. x 

3.2.1  Probability Calculation and Coordinate Transformation 

The first tool needed for the PBDM is an analytical expression for the probability calculation 

given by Px. in terms of the density function associated with the generalized Chi-Squared random 

variable. The probability that Xj <Tis given by the one-dimensional integral 

(Xj<T)= [Tfx(c)dc (114) 
JO 

Pxs   —    ™x 

where fx(c) is the generalized Chi-Squared density function. If the filter is a perfect match of 

the true system (a,- = a*), then the density function, fx(c), is exactly the Chi-Squared density 

function given by Equation (93) and the probability, PXj, can be readily calculated. However, if 

any mismodeling of the true system is present in the filter model (a, ^ at), then the generalized 

Chi-Squared density function fx(c) is not readily known, as first mentioned in the discussion of 

measure M7. Mathematical analysis did result in the derivation of the first two moments of the 

generalized Chi-Squared random variable % in the presence of mismodeling, and these are presented 

in Appendix A. Therefore, it is necessary to evaluate an m-dimensional integral based on the density 

function for the residuals, fr(p), which can be expressed in the presence of mismodeling. This 

multi-dimensional integral is given by 

Px(Xj   <   T) = j..-j^fr(p)dp (115) 
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where AT represents the appropriate region of integration in the parameter space. The functional 

mapping of the random variable r to the random variable % is defined by Equation (113). 

The density function, fr(p), is fully characterized as a normally distributed random variable 

with mean, fij, and covariance matrix, A*. 

TjlN^M] (116) 

Hanlon [22] developed expressions for the residual mean vector, /j,j, in the presence of mismod- 

eling and his results are summarized in Appendix C. Additionally, Hanlon showed that the actual 

covariance matrix for the residuals in the presence of system mismodeling is the true covariance 

matrix, At, associated with the residuals and is computed in terms of the true system matrices as 

At = HfPt H?+Rt (117) 

where P^~ is the true error covariance matrix committed by a filter based on at against a "real- 

world" based on at (the superscript denotes the matrix prior to a measurement update), Ht is the 

true system oulput matrix and Rt is the true measurement noise covariance matrix. Similarly, the 

filter-computed covariance matrix is given by 

A^H.PTHj+R, (118) 

where P" is the elemental Kaiman filter state estimate covariance matrix prior to a measurement 

update, Hj is the elemental Kaiman filter system output matrix and R, is the elemental Kaiman 

filter measurement noise covariance matrix. Although Hanlon only considered mismodeling of the 

elemental filter model control input matrix, Bdj, the elemental filter model oulput matrix, Hj, and 

the elemental filter model state transition matrix, &j, his work is easily extended to incorporate 

mismodeling of the elemental filter measurement noise covariance matrix, R,, and the elemental 

filter dynamics driving noise covariance, Qdj. Specifically, since Equation (117) is independent of 

Rj and Qdj, the true covariance matrix, At, associated with the residuals is still given by Equation 

(117). The mean of the residual in the presence of R, and Qdj mismodeling is presented in Appendix 
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C as being zero-mean. Therefore, a fully characterized density function, fr(p), is available for use 

in the integration given by Equation (115). 

It is possible to simplify this integration and desirable to formulate a closed form solution 

that would avoid the use of numerical integration. Unfortunately, a closed form solution was not 

found because of the subtle yet significant difference in the covariance matrix, A,-, that appears the 

quadratic 

Xj = rJA7lri 

and the true covariance matrix associated with the residuals, At, i.e., Aj ^ At. Maybeck [44] 

utilized a coordinate translation and transformation to find a closed form for a similar integration, 

given that the covariance matrix used in the quadratic is At. Specifically, problem 6.10 of [44] 

assumed that the quadratic would be of the form 

Xj = rJA^ri 

Despite the inability to apply Maybeck's solution directly, considerable insight was gained into the 

use of the coordinate transformation to simplify the numerical integration that would now be nec- 

essary. The density function, fr (p), of the m-dimensional residual can be visualized by means of a 

hyperellipsoid contour map, with a two-dimensional example illustrated in Figure 32. Integration 

over the shaded (hyper)elliptical region, AT, would be messy in terms of the limits of integration. 

However, this can be simplified if the region is transformed to the shaded (hyper)spherical region, 

AT>, associated with the density function, fr>, as shown in Figure 33. The development presented 

here will show that the transformed limit of integration is a radius of integration equal to the square 

root of the threshold, y/f. The examples shown below assume the residuals are zero-mean for il- 

lustrative purposes when, in general, one must consider the non-zero mean case shown in Figure 34 

(recall that the residuals am zero-mean for parameters affecting R and Qd, but not for parameters 

affecting <&, Bd, or H). 
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locus of constant f_r values 

Figure 32. Density Function Contour Map (Hyper)ellipsoids for Two-Dimensional Residuals 
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locus of constant f_r 

integration radius 

Figure 33. Transformed Density Function Contour Map (Hyper)spheroids for Two-Dimensional 
Residuals 
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Figure 34. Transformed Density Function Contour Map (Hyper)spheroids for Two-Dimensional 
Residuals with a Non-Zero Mean 
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Apply the following linear transformation to the residuals 

where a Cholesky square root of Aj1 is used such that 

(119) 

AJ1   =   (^)\y/^) (120) 

This linear transformation on the Gaussian random variable maintains its Gaussian nature as r 

Nlfi/j, A't] with the transformed mean vector and covariance matrix given by 

4- = \f*Fxv-i (121) 

M (^)At(^) (122) 

and the generalized Chi-Squared variable given by 

     /T  / 
Xj ~ r3  T3 

(123) 

This is quickly verified by first establishing that the quadratic used to calculate Xj is unaffected: 

/T  . 
Xj   =   TJT i = (^)* ( v^) =r? ( ^Ff (ft?)r' 

T3A3    T3 
(124) 

Next the mean of the residual is given by 
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/4   =   E ft} = E {tfÄ^vj} = cy[Ä^E{vi}=^nj (125) 

Finally, the covariance matrix is given by 

A'   = 

A? 

E { W - 4) W - tif} = E {r>f} - E {r>f} - E {ptf} + E {^} 

= (°y/Ä?) E {vj} (v/v)T - ^Vi ( ft?*)* 

= (^)(^{^J}-^J)(^)T=(\/v)A*(\/v)T <126> 

This leads to the transformation of Equation (115) into the m-dimensional integral 

\{Xj < T) = j-JAifAitW (127) 

which is now based on the transformed density function fT'(p'). Finally, before delving into the 

numerical integration technique used to evaluate Equation (127), the radius of integration shown in 

Figure 33 must be identified. The integration has been simplified from hyperellipsoids to hyper- 

spheroids, and Equation (123) can be recognized as the equation for a hypersphere; so the upper 

limit of integration is simply some radius of this hypersphere. Furthermore, the original limit of in- 

tegration for Px(xj < T) in Equation (114) is the threshold, T, and from the relationship of Xj to r' 

given by Equation (123), the radius of integration is recognized as the square root of the threshold, 
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yff. The discretization method discussed in Section 3.2.3 will provide one method for calculating 

T. 

3.2.2  Multi-Dimensional Numerical Integration 

The previous section stated the need to perform numerical integration for the evaluation of 

Equation (127). Most integration techniques presented in the open literature address numerical 

integration up to three dimensions. However, an m-dimensional numerical integration routine is 

required here, where m is the number of measurements being fed to the MMAE. The following 

integration method was provided by Oxley [61] and Maybeck [44] and simply extends the often 

utilized technique of transforming the coordinate system from Cartesian to polar coordinates prior 

to performing the numerical integration. 

Consider the m-dimensional integration given by 

/ """ / /(ri) r2, • • • rm)dridr-2 ... dru 
(128) 

where f(n,r2, ...rm) is the m-dimensional function that is being integrated.  Transform from 

Cartesian to hyperspherical coordinates via the following equations 

7"l      =     TCOs(^>) 

r2   =   Tsin(</>)cos(0i) 

r3   =   Tsin(^>)sin(0i)cos(02) 

rm-i    =   r sin(0) sin(0i) sin(02) • • • sin(0m_3) cos(0m_2) 

rm   =   T sm(<j)) sin(0i) sin(02)... sin(0m_ 2) 
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where 

T   =   radius of the hyperspheroids 

\<Q*<\   Vfc = l,2...m-2 

for <j> and 6k within the limits 

0 < 4> < 2TT 

and the differential hypervohune dV is given by 

dV = dr\dr-i... drm = |J| drdcfrdOi... d6m-2 

where J is the Jacobian matrix given by 

(129) 

J   = 

dr\/dr    dr\/d<f) 
drildT    dri/dcf) 

drm/dr   dr^/dcj) 

dri/d6m-2 
dr2/d6ni-2 

drm/d0m_2 

(130) 

In fact, the determinant of the Jacobian is given in the new coordinates as 

| J| = Abstr111-1 sinm-2(</>) sin^^öO smm-4(ö2)... Bin(em_3)] (131) 

where "Abs" refers to the absolute value. The user defines the spacing between discrete evaluation 

points by setting dr, <ty and dßi... d6m-2. Now the numerical integration is performed by summing 

up the product of the function and the differential hypervolume evaluated at the user defined discrete 

points r = [n, r2,... rm]T as shown in Equation (132): 

(132) 

The number of discrete values used for the evaluation points will dictate the accuracy and computer 

processing time required to perform the integration. 
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In summary, evaluation of Equation (127) is performed numerically using Equation (132) 

where 

r = is the radius of integration that varies from 0 to VT 

<t> and 6k have set ranges previously defined 

dV is calculated using Equation (129) 

dr, d(j> and dOk are user specified 

and f(n, r2,... rm) is given by a normal density function with mean, fx'j, and covariance, Alt (see 

Equations (121) and (122)) 

M = /(n, r* •. • rm) = {27r)JlA,^ «P {4 (r - "i)T ^_1 <r " ^} 

3.23   Discretization Method 

The discretization method discussed in this section is one of many possible which utilize the 

tools presented in the previous two sections. Other concepts including methods to move, contract, 

and expand the MMAE bank based on the numerical evaluation of Px. could be explored. The 

method of choosing the parameter values for the elemental Kaiman filters based on the calculation 

of the probability, Px., allows the algorithm to be adaptive and replace previous ad hoc methods 

such as uniform spacing of the parameter values. Additionally, it takes into account the system's 

sensitivities to the parameters being estimated, which are often not precisely known to a designer 

who is choosing the filter-assumed parameter values in an ad hoc manner 

Return to the five-filter example with the arbitrarily chosen probability values, Px., shown 

in Table 2 on page 110. In order to integrate these probabilities numerically with Equation (132), 

it is necessary to have the mean vector and covariance matrix for the residuals based on both a 

truth model and a filter model. Since the parameter value for the truth model is not exactly known 

(otherwise there would be no estimation needed), it is necessary to assume values for the truth 
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model based on die best guess given by the MMAE. Specifically, assume the true parameter values 

are equal to the components of aMMAE(*t)- This best guess is available on-line, and by design the 

filter in the center of the bank will assume its value. 

Given this assumption, the threshold, T, can be determined exactly for any choice of PXt, 

where the subscript t indicates that the filter-assumed parameter values are assumed to match truth. 

Recall that, if the filter is aperfect match of the true system, then the density function fx(c) is exactly 

the Chi-Squared density function given by Equation (93) and the probability can be readily calcu- 

lated. Inversely, the threshold can be found using the MATHCAD function T = qchisq(PXt,xn)n 

which is a function of both the desired probability for the filter assumed as truth and the dimension 

of the residuals [39]. Note that T is not a function of äMMAE(*»); so once PXt and m are set, T will 

be known for all values of äMMAE(^)- 

The remaining four filters will be assigned parameter values above and below äMMAE(*i) 

such that their Px. values agree with those shown in Table 2 for the now known threshold value, T. 

This raises the issue of how to select parameter values for the remaining four filters without simply 

running multiple guesses through the numerical integrator and hoping that four of them generate 

the desired Px. values. An automated search algorithm will be presented shortly to overcome this 

problem. 

A second issue is how to select the Px. values shown in Table 2 (page 110) in order to strive 

for the desired pj values. Recall that the pj values were chosen to meet the design goal of giving the 

MMAE both a foveal and peripheral view of die parameter space. Engineering intuition supports the 

proposition that selecting parameter values for filter 3 in this five-filter example such that PXa = 0.5 

(i.e., this filter will be a good match to truth with a probability of 0.5) is equivalent to selecting its 

parameter values such thatp3 = 0.5 (i.e., the MMAE will assign a probability weight of 0.5 for this 

filter). This holds for all filters with j < arg [ywx], i.e., filters 1 and 2 for this example. Therefore, 
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Px = Pj; for j = 1,2,..., arg [pmax] as shown in Table 2. Additional insights are required prior to 

realizing that Px. = l-Pj for j > arg [p,^], i.e., filters 4 and 5 for this example. The values in 

Table 2 of PXi = 0.76 and PXb = 0.99 may seem counterintuitive, since these filters will be assigned 

parameter values that are not designed to match truth as well as filter 3, but their probability, PXj, 

is selected greater than PXa, implying that they are a better match to truth. 

This phenomenon is best understood (but not limited to) the case in which the parameter value 

being estimated is the measurement noise covariance R, and empirical studies provided validation of 

this concept for this case. The reason is clearwhen looking at Equations (117) and(118) on page 113, 

which are dependent on the choices of the measurement noise covariances Rt and R, respectively. 

Given mat Rt is selected as BMMAE (the truth model is based on the best guess from the MMAE), 

when R, takes on values greater than Rt, the eigenvalues of the associated residual covariance 

matrix, Aj, will increase. This directly effects A't through Equation (122), resulting in smaller 

eigenvalues for A't. The discussion in Appendix C states that the residuals will be zero-mean when 

mismodeling the measurement noise covariance. This results in numerically integrating density 

functions similar to the two-dimensional example shown in Figure 33. Given that the eigenvalues 

of A't have been reduced, the numerical integration and thus probability value, Px., for a given 

integration radius will increase. In other words, given that the eigenvalues of A^ have been reduced, 

the density function has become highly peaked with more of the probability density residing about 

its zero mean. Therefore, the numerically integrated probabilities, PXi and PX5, for filters 4 and 5 

will be greater than the probability, PXs, for filter 3. It is anticipated that mismodeling in any of 

the other system matrices (Qdj, *,-, H.,, and Bdi), will result in this same attribute, and this is a 

topic for future research. To account for this phenomenon, choose the parameter values such that 

the probability variation between the center filter and its neighbors is used in conjunction with the 

probability, Px., calculated through Equation (132). 
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Continue with the example problem of five filters and focus on the three inner filters (filter 

numbers 2 - 4). The above phenomenon is illustrated in Figure 35, where the probabilities, Px., are 

shown to grow faster towards one for filters with higher assumed values of Rj.   The probability 

1.0 

Chi-Squared 
Probabilities 

P4=0.76 

P3=0.50      _. 

P2=0.24 

T = Radius of Integration 

Figure 35. Example Integration Curves with Equal Probability "Variation 

variation between filters 3 and 4 is shown as Ax and between filters 2 and 3 as A2. Recall the 

design choices for the probabilities of filters 2 and 3 as PX2 = 0.24 and PX3 = 0.5. The probability 

variations are then given by 

Al        =        -f*4   ~~    "Xs 

One approach is to require equal probability variations such that 

Ai   =   A2 

=*■   pxt ~ px3 
= px3 ~ Px2 
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and for this example PXi = 0.76. Therefore, when choosing a parameter value for filter 4, the goal 

is to find a numerically integrated probability of 0.76. Similarly, for filter 5, PXb = 0.99. Notice 

that, in general, Px. = \-Vjfor 3 > arS [ftnax]. 

The discretization method presented in this section provides a more systematic and more the- 

oretically substantiated means of choosing the filter-assumed parameter values, a,, than the ad hoc 

methods used to date. Specifically, the designer's primary concern is to select desired probability 

Pj values, leading to the associated Px. values such as those in Table 2, then apply the PBDM to 

determine the appropriate &j values. 

3.2.3.1 Parameter Wue Search Routine 

As mentioned in Section 3.2.3, an automated search routine is presented next which greatly 

simplifies the process of finding parameter values for the filters to meet the desired probability 

goals. This routine has only been developed for the special case of zero-mean residuals in the 

presence of mismodeling and a scalar parameter Recall mat Appendix C identified the special case 

of zero-mean residuals as associated with Qd (dynamics noise covariance) and R (measurement 

noise covariance) mismodeling. It is believed that a similar search routine could be developed for 

the nonzero-mean case and some ideas will be presented along these lines. 

The search routine is based on a measure of the eigenvalues of the transformed residual co- 

variance matrix A't. Recall the above discussion explaining how the eigenvalues of A't varied with 

the choice of the parameter R resulting in the various values for the probabilities PX(XJ <T).lt 

is possible to use a measure of the eigenvalues of A£ to predict Px. without evaluating this prob- 

ability numerically. Specifically, the product of the eigenvalues of A't was found to predict Px. 

consistently: 
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Mei9   =   UXi (133) 

where 

Xi = the eigenvalues of A^ 

This makes sense since the product of the eigenvalues of a matrix is directly related to the volume 

of the hyperellipsoid defined by that matrix [73]. The principle axes of this hyperellipsoid are 

represented by the eigenvectors of the matrix. The flowchart of the search routine based on the 

measure shown in Equation (133) is illustrated in Figure 36. Again, each major event or decision is 

labeled with a number to help the reader relate the forthcoming discussion with the flowchart. 

The basic process used by the search routine is repeated for each elemental filter First, assume 

a parameter value for the elemental filter, i.e., choose a "guess" value. Minimum and maximum 

guess values will be discussed presently, but for now, recognize that the search routine will begin 

at either a minimum or maximum guess value. Calculate the measure, Meig, associated with this 

guess value and determine if the search criterion defined below is met. If so, the search is complete 

and repeat for the other elemental filters. If not, make another guess for the parameter value based 

on a guess step size described below and check against the criteria. Continue this process via a loop 

until the criterion is met or a set number of guesses have been tried. 

1. Set Search Criteria: The search criteria include: 

äMMAE = scalar true parameter value (current best guess) 
M^ = desired eigenvalue measure 
a/ = minimum scalar guess value, see block 3 "Initialize Search " 
ah = maximum scalar guess value, see block 3 "Initialize Search " 
Ng = number of guesses of parameter values (for each elemental filter) for the search 

The value of aMMAE is given by the MMAE. The desired eigenvalue measure, M%g, must be em- 

pirically determined for each filter Recall that one filter (typically the center filter) takes on the 

value of aMMAE and is assumed to match truth, so there is no need to search for this parameter 

value, and thus there is no need to find M*ig for this filter A manual search must be done once for 
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each of the J-l values ofM*ig, as explained below. The phrase manual search refers to arbitrarily 

selecting a value (a guess) for the parameter a,, then performing the numerical integration to de- 

termine if the resulting PX(XJ < T) is equal to the desired probability value in Table 2. Once a 

parameter value is found mat produces the appropriate probability value, Px., the eigenvalues of 

A't associated with this parameter value are used to calculate M%g via Equation (133). This process 

is repeated to determine each of the J-l values of Af£fl. However, after M%g is determined once 

for any single value of aMMAE, this search routine will replace the manual method for all other val- 

ues of aMMAE- Section 3.2.3.2 will discuss implementation issues and explain the need to perform 

the automated search many times to create a look-up table for on-line use. It is recommended to 

perform the manual search with a value of aMMAE that is approximately centered in the parameter 

space. More importantly, avoid using the edges of the parameter space for this manual search, since 

there will be no room to place parameters in one direction. 

Intelligent choices for a* and ah will be discussed in block 3, "■Initialize Search." The number 

of guesses for each elemental filter is arbitrary and often less than 100 for most problems. Large 

values of Ng will slow down the search routine and rarely provide noticeable improvements in the 

final probability calculations. This is largely dependent on the system's sensitivity to the parameter 

in question, but in most cases the numerical precision of the integration is not sufficient to delineate 

between a search with 50 guesses and a search with 80 guesses. 

2. Find Step Size: The step size between guesses for each elemental filter is calculated for the 

scalar parameter as 

fäMMfts H       for filters assuming &j < äMMAE n -,. 
an-%Mftfi       for filters assuming &j > SMMAE 

where 

&j    =   assumed parameter value for filter/ 
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Notice that «S, is dependent on whether the elemental filter's parameter value is assumed to lie above 

orbelowaMMAE- 

3. Initialize Search: Start the guess value at the minimum guess value and set a flag used to 

indicate when the criterion is met (found = 0). The search time for the routine is heavily dependent 

on the chosen minimum and maximum guess values. An obvious choice might be the minimum 

and maximum allowable parameter values, however, these would be poor choices in most cases. A 

better approach is to let 

a*      =     Si- &MMAE 

aft     =     Sh • &MMAE 

where Si and Sh represent arbitrary fractions of aMMAE- Typical values for a five-filter problem are 

shown in Table 3. This approach reduces the parameter space used in the search and significantly 

decreases computer processing time. 

Table 3. Example Fraction Values 

Filter # 1 2 3 4 5 
Fraction Value 0.05 0.4 - 1.3 1.5 

4. While Loop: The flowchart symbol used here has the following interpretation. The loop 

is entered from the top, i.e. after block 3 is complete. Blocks 5 - 8 are repeatedly processed until 

either the measure criterion is met or the guess value exceeds aMMAE- The loop is exited to the right 

to begin processing of block 9. 

5. Calculate Measure: The eigenvalue measure, Meig, is found via Equation (133), which 

requires calculation of Equations (117), (118) and (122). One of the primary motivations for using 

this search routine is the ability to avoid the computationally intensive numerical integration required 

to calculate PX(XJ < T). Equations (117), (118), (122) and (133) require much less computer 

processing time than the numerical integration. 
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6. Check If Criterion is Met: Compare Meig to M*ig and set the flag (found = 1) when the 

measure criterion is met. Notice that, since the search is increasing (decreasing) the guess value 

toward aMMAE as explained in block 7, the criterion is met if Meig equals or passes by M%g. For 

the cases in which a; < aMMAB, Meig will initially be greater than M%g. As the search continues 

(the guess value increases), Meig will decrease and eventually equal or pass M^ig. Recall that &j 

is initially much less than aMMAE, resulting in large eigenvalues for A't and thus a large value for 

Meig. As the guess value increases, &j gets closer to aMMAE, resulting in smaller eigenvalues for 

A't and thus a smaller value for Meig. Similarly for a; > aMMAE, but with Meig increasing from a 

small value as the guess value decreases. The specific logic is given by 

IF (Meig<Miig\ THEN (found = 1)        for a,-   <   aMMAE 

IF (Meig>Mfig\ THEN (found = 1)        for a.,-   >   aMMAE 

7. Increase Guess by Step Size: If the criterion is not met, then the guess value is increased 

by the step size 5, for filters assuming &j < aMMAE or decreased by Sj for filters assuming &j > 

aMMAE- 

8. Store Guess: If the criterion is met, then the guess value is stored as the chosen parameter 

value for this filter and the found flag is set to 1, allowing the search to terminate. 

9. & 10. Repeat for Other Filters: Simply repeat the process for the remaining filters. Again, 

the search is performed by increasing the guess value when a.,- < aMMAE and decreasing the guess 

value for &j > &MMAE- 

It is important to validate that the search routine has found parameter values which result in 

the designer-chosen values for PXj. This is done by numerically integrating via Equation (132) for 

each parameter value. Given that the validation is successful, the discretization process is complete 

for the chosen value of aMMAE- 
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Recall that this routine has only been developed for die special cases of zero-mean residuals 

in the presence of mismodeling and a scalar parameter This allowed the search routine to focus on 

the eigenvalue measure given by Equation (133) since all the densities (matched or mismatched to 

truth) are centered at the origin. A similar search routine could be developed that incorporates a 

second degree of freedom, namely the magnitude of the transformed residual mean vector: 

M.    = 
m , 1/2 

(135) 

Ahj j A^j-) • • • /V3 

where 

For a given value of T, a large value of M^ would lead to smaller numerical probabilities, 

Px(Xj < T), than a small value of M^. Simply look at Figure 34 on page 117 and realize that 

a large residual mean vector magnitude will shift the density's region of high probability outside 

the integration region. Other concepts include monitoring the direction of the mean vector This 

direction is not important once die density is transformed to the "primed" coordinates and the hy- 

perellipsoids are transformed to hyperspheroids, i.e., the transformation from Figure 32 to Figure 

33. Similarly, Figure 34 illustrates that changing the direction of the mean vector will not affect the 

integrated value of PX(XJ < T), i.e., moving the (hyper)spheroids form Cartesian quadrant one to 

any other quadrant will not change PX(XJ < T) unless the magnitude of the mean vector changes. 

The exact methodology used to incorporate Mw and the direction of the mean vector is a subject 

for future research along with the case in which the parameter vector is not a scalar 

3.2.3.2 Implementation Issues 

Two options are available for real-time implementation of the discretization method which uti- 

lizes the numerical integration calculation and the parameter value search routine. First, at each 
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sample time and for the current value of aMMAE, the search routine could be used to generate can- 

didate parameter values for the filters. This would be followed by validating that the candidate para- 

meter values produce the design choices for PX(XJ < T) via numerical integration. This approach 

is extremely computer-intensive since the numerical integration can require considerable process- 

ing time for accurate results with problems having multiple measurement sources, i.e., m > 1. This 

motivates a second approach which performs the numerical integration off-line. The search routine 

would also be performed off-line for several discrete values of äMMAE which range over the span 

of the admissible parameter space. The filter-assumed parameter values determined for each dis- 

crete value of aMMAE would be stored in a look-up table and referenced by that value of aMMAE- 

By design, a reference value of äMMAE will be used as the parameter value for the filter residing in 

the center of the bank. This look-up table will be available in real-time and the table entry closest 

to the current value of äMMAE will be used at each sample time. 

A critical assumption must be identified when applying this discretization method, regardless 

of which option just described is being used. Recall that the search method considers multiple guess 

values for the parameter values, and for each guess the residual covariance matrix must be calcu- 

lated. Given mat the gains and covariances are chosen to be computed on-line, a Kaiman filter 

would be required for every possible guess value being considered. Without the use of precom- 

putable gains and covariance matrices, a potentially infinite number of Kaiman filters being run in 

real-time would be needed, which is clearly not practical. In order to calculate the true and filter- 

computed residual covariance matrices given by Equations (117) and (118), it is easier to assume 

that precomputable Kaiman filter gains and covariances are being used (easier in the sense that the 

gains and covariances need not be calculated on-line). 
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3.2.4 Algorithm Description 

The probability-based discretization method (PBDM) is now used in conjunction with para- 

meter position estimation monitoring to form a new algorithm titled the "Probability Algorithm". 

The probability algorithm executes a two-step process. First, find the new center of the bank using 

parameter position estimation monitoring as introduced on page 40. This first step acts as a bank 

movement mechanism which if applied at every sample period, could induce continual transients in 

the state estimates. This motivates using the ad hoc technique of decision delays discussed in Sec- 

tion 3.1.5.3. Second, apply the PBDM to determine the parameter values for the remaining filters in 

the bank. Notice the absence of any explicit contraction or expansion methods. This algorithm sim- 

ply keeps the bank centered on the best estimate for the parameters, aMMAE (as closely as possible 

in view of the discrete values of aMMAE stored in the look-up table), then relies on the new dis- 

cretization method to determine the span of the parameter values. The same performance enhance- 

ment discussed in Section 3.1.5.2 for initialization of newly declared filters is implemented for the 

probability algorithm with implementation issues discussed in Chapter 4. The probability algorithm 

just described provides only one methodology for utilizing the PBDM bank-sizing algorithm and 

other moving-bank mechanisms could be used in conjunction with the PBDM. In fact, Section 3.3 

presents the idea of combining the moving-bank density algorithm with the PBDM algorithm. 

3.2.5 Dead Zone for Moves 

Applying a dead zone similar to the method discussed in Section 3.1.5.1 can prevent unwanted 

bank movements. Given that a true parameter changed, the bank would move toward and eventu- 

ally encompass the true parameter within the bank's parameter span. Once the true parameter was 

encompassed, an additional move might be needed to center the bank on the true parameter value. 

However, in many cases the algorithm induced multiple moves that would overshoot the true para- 
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meter and even oscillate about this true value with multiple moves to the left and right. The result 

was erratic parameter estimates that degraded performance. The solution was to implement a dead 

zone that precluded the bank from making multiple small movements. The size of the move being 

attempted would have to be large enough (implying that it is really needed), or the move would not 

be allowed. The rather simple logic is given by: 

IF (Attempted Move Size < Minimum Move Size) THEN (Do Not Make Move) 

The minimum move size or dead zone is empirically determined with the following guidelines. Con- 

sider the typical span of the parameter values stored in the look-up table. Specifically, observe the 

distances between the stored values for the bank center and their associated endpoints. These dis- 

tances will indicate the amount of true parameter variation that can be tolerated without a large risk 

of having the true parameters move outside the current parameter span of the MMAE. A reasonable 

first choice for the minimum move size is one-third the average distance from the bank centers to 

their endpoints. This one-third factor was determined empirically through simulations. Clearly, too 

large of a minimum move size will cause the algorithm to become sluggish in reacting to parame- 

ter variations while too small a minimum move size will make the dead zone method ineffective, 

leading to nonsystematic moves in the parameter space. 

3.3 Combined Density and PBDM Algorithm 

Recall the discussion in Section 3.1.5.4 which stated that the density algorithm provides in- 

telligent decision making for movement, contraction and expansion of the bank However, it relies 

heavily on uniform spacing of the parameter values within any newly declared parameter span of 

the bank. The probability based discretization method provides a process to choose parameter val- 

ues intelligently for the remaining filters in an MMAE bank, given the center parameter value for 

the bank. An obvious combination is to use the density algorithm to determine the center parameter 
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value for the bank and the PBDM to discretize the filter-assumed parameter values about this center 

parameter value. 

Full descriptions of the decisions made by the density algorithm are given in Section 3.1.4. 

When making a soft move, expansion or contraction, the bank is centered on the filter-assumed 

parameter value having the maximum probability. This provides the new center parameter value, 

aSer> which is then used to reference the look-up table created by the PBDM. For the remaining 

decisions (medium and hard moves), the density algorithm only provides new parameter endpoints. 

One logical choice for the new center parameter value is found by taking the midpoint between the 

newly determined parameter endpoints and given by 
„new _i   „new 

new     _ al      ~raJ 
2 "'center 

This relatively simple approach is used since there is no motivation for choosing any other point 

between the new parameter endpoints. Again, a£f$er is then used to reference the look-up table cre- 

ated by the PBDM. The same performance enhancements discussed in Section 3.1.5 can be applied, 

with the exception of the on-line Sheldon discretization since the PBDM is already performing the 

discretization. 

3.4  Chapter Summary 

This chapter presented the analysis that led to the development of new algorithms for a moving- 

bank MMAE. The underlying concepts were described to assist the reader in understanding why 

certain measures were chosen for the density algorithm's decision making process. Additionally, a 

probability-based method was introduced as a new means of discretizing the filter-assumed parame- 

ter values in the MMAE bank. Future research could be based on these newly developed concepts, 

and the algorithms used in this research provide a few well-developed methods for parameter esti- 

mation. 
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Chapter 4 - Simulation Performance 

4.1  Overview 

This chapter first introduces the simulation techniques and computer software used to apply 

the concepts developed in previous chapters. The motivating example of parameter estimation for 

fault tolerant aircraft precision landing is simulated. It is not the focus of mis research to provide an 

in-depth sensitivity analysis of the algorithms to all potential real-world scenarios that could apply 

to aircraft precision landing. Rather, a single failure mode representing interference/jamming of the 

GPS receiver is simulated for proof of concept and validation of the algorithms. An overall descrip- 

tion of the integrated system is given, followed by detailed state and measurement models for each 

of the navigation subsystems used. The implementation details and performance of several algo- 

rithms are presented. Specifically, a fixed-bank MMAE and four moving-bank MMAE algorithms 

are discussed with some variations on the moving-bank algorithms as shown below: 

1. Fixed-Bank MMAE 

2. Moving-Bank MMAE Incorporating the Density Algorithm 
- Density Algorithm with Expansion and Increased Delay 

3. Moving-Bank MMAE Incorporating the Density Algorithm with Sheldon Discretization 
- Density Algorithm with Sheldon Discretization, Expansion and Increased Delay 

4. Moving-Bank MMAE Incorporating the Probability Algorithm 

5. Moving-Bank  MMAE   Incorporating   the   Density   Algorithm  with  Probability-Based 

Discretization Method 

Final comparisons of the algorithms will be discussed in Chapter 5. 
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4.2 System Description 

The following system description is a modified version of the one presented by White [77, 

78] and parallels the discussion presented by Miller [53]. The 3 variations from White's discussion 

include deletion of a differential GPS to yield a conventional GPS, deletion of pseudolites, and 

reduction ofthe truth model from 62 to 13 states, which was ajoint effort withMiller [53]. Themain 

element ofthe GPS-based precision landing system (PLS) being monitored for parameter variations 

in its model is the GPS, specifically with respect to the amount of interference/jamming corruption 

(measurement noise) that enters the GPS receiver The INS, barometric altimeter and radar altimeter 

also provide measurements to the Kaiman filter The following measurements are available: four 

satellite vehicle (SV) pseudoranges, altitude from the barometric altimeter and height above ground 

level from the radar altimeter. 

A block diagram representing die PLS configuration is shown in Figure 37. The true aircraft 

position is generated by the trajectory profile generator PROFGEN [56] and is provided to the per- 

formance evaluation tool. The GPS satellite vehicle (SV) positions are given by actual satellite data 

recorded on 4 May 1991 and are combined with the true aircraft position to obtain true ranges, which 

are modified with appropriately modeled noise to provide pseudoranges measurements for use by 

the GPS. 

Each navigation system generates measurements that are represented as perturbations from the 

true range, and the final difference measurements are then formed by subtracting the GPS measured 

ranges from their corresponding INS-calculated ranges. The extended Kaiman filter (EKF) equa- 

tions propagate estimates ofthe PLS error states and use the measurements to update these state 

estimates. Finally, these state estimates are used to correct the INS-indicated position at each sam- 

ple time. The truth and filter models consist of 13 states (11 INS states and 2 GPS states) with 

details to follow. 
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4.2.1   INS Models 

4.2.1.1   The INS Truth and Filter Models 

This section presents the truth and filter models used for the INS. The INS is a strapped-down 

wander azimuth system based on the Litton LN-93. The manufacturer, Litton, developed a 93-state 

error model [25,62] describing the error characteristics of the LN-93. The error states <5x used in 

the full model may be separated into 6 categories: 

«5x = [6xf 6^6^S^6^5x^]T (136) 

where <5x is a 93-dimensional column vector and: 
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6xi represents the "general" error vector containing 13 position, velocity, attitude, and vertical 
channel errors; the first nine states are those of the standard Pinson model [62] of INS error 
characteristics. 
<5x2 consists of 16 gyro, accelerometer, and baro-altimeter exponentially time-correlated errors, 
and "trend" states. These states are modeled as first order Gauss-Markov processes. 
6x3 represents gyro bias errors. These 18 states are modeled as random constants. 
6x4 is composed of accelerometer bias error states. These 22 states are modeled in the same 
manner as the gyro bias states. 
6x5 depicts accelerometer and gyro initial thermal transients. The 6 thermal transient states are 
first-order Gauss-Markov processes with w5 = 0 so as to account for just the initial transient 
effects. 
<5x6 models gyro compliance errors. These 18 error states are modeled as biases. 

The original truth model state space differential equation is given by 

<5xi 

<5x2 

«5X3 

6x4 

<5X5 

<5X6 

>   = 

F11 
0 
0 
0 
0 
0 

F12 

F22 
0 
0 
0 
0 

F13 
0 
0 
0 
0 
0 

F14 
0 
0 
0 
0 
0 

F15 
0 
0 
0 

F55 
0 

F16 6x1 
f             \ 
Wl 

0 (5X2 w2 

0 6x3 0 
0 < 

6x4 [ + 1 0 
0 6x5 0 
0 [ «5x6 J 0 

V.      J 

}     (137) 

This 93-state error model is a highly accurate LN-93 representation, but the high dimensionality of 

the state equation makes the model prohibitively CPU-intensive (computationally, and in terms of 

storage) for projects examining a large number of problem variations. The work of Negast [58] at the 

Air Force Institute of Technology (AFIT) addressed the reduction of the INS error-state model while 

preserving enough fidelity to be considered a viable truth model. 

A reduced-order model is used for both the truth and filter model in this research and is defined 

in Equation (138): 

m- F(red)ll    F(red)i2 
0 1 (rerf)22 ]{£}+{:;}     <IM

» 
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Note that the submatrix indices used in representing the 13-state model are not identical to those 

used in outlining the 93-state INS errormodel. This difference is indicated by the notation F(red) for 

reduced order. The relationship between the two models is shown in Appendix D. Therefore, the INS 

filter model is comprised of 11 states (the first nine being the standard Pinson error model states): 

3 platform misalignment errors, 3 velocity errors, 3 position errors, and 2 states for barometric 

altimeter stabilization. 

4,2.1.2  The INS Measurement Model 

The only measurement model associated directly with the INS is that for barometric altimeter 

aiding. The altimeter aiding is used to compensate for the instability inherent in the vertical channel 

of the INS. The altimeter output AltBaro is modeled as the sum of the true altitude h, the error in 

the barometric altimeter ShB, and a random measurement noise v of variance RBaro = 3500 ft . 

Similarly, the INS-calculated altitude AltINS is the sum of the true altitude and the INS error in 

vehicle altitude above the reference ellipsoid, Sh. A difference measurement is used to eliminate 

the unknown true altitude, ht, resulting in Equation (139): 

Sz    =    AltjNS — Altßaro 
=   [ht + 6h]-[ht + 6hB-v] (139) 
=   Sh — ShB + v 

INS error in vehicle altitude above the reference ellipsoid, Sh, and total barometric altimeter corre- 

lated error, ShB, are states 10 and 11 in the 11-state INS model. See Appendix D for the models and 

numerical values of the model parameters. 

4.2.2   The Radar Altimeter Model 

A radar altimeter is incorporated into this application because of the intent of generating a 

precision landing system. A GPS-aided baro-inertial system does not have sufficient accuracy in the 
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vertical direction for this purpose, so the additional accurate input from a radar altimeter is used. The 

measurement equation of the radar altimeter is based on the difference between the INS-predicted 

altitude AltINS and the radar altimeter measurement AltRait: 

8z   =   Attics - AltRait 
=   [ht + 6h]-[ht-v] (140) 
=   6h + v 

The errors in the radar altimeter are modeled as white noise with no time-correlated component. 

This may be a rather crude model, but should be sufficient to demonstrate performance trends. Note 

that no additional states are required with the addition of this radar altimeter model. 

The radar altimeter measurement noise variance RRait is a function of aircraft altitude above 

ground level (AGL) and will be the same in the truth and filter models. The radar altimeter noise's 

altitude-dependent variance [24] is given by 

RRait = {[0.01]2 * [AGW]2} + 0.25 ft2 (141) 

4.23  GPS Models 

The GPS generates user position based on "known" ranges to satellites at "known" positions. 

The satellites themselves transmit their position in space (in the form of ephemeris data) as accu- 

rately as it is known and the exact time (also a best estimate) at which the transmission is sent. The 

actual range information is calculated based on knowledge of the satellite position and the finite 

propagation speed of the electromagnetic radiation emitted from the satellite. 

4.2.3.1   The 30-State GPS System Model 

The GPS model used in this work was developed by past researchers at AFIT [16,58,75]. 

The dynamics and measurement equations for the full 30-state system model are presented in this 

section. Five types of error sources are modeled in the GPS state equations. The first error type, 

142 



user clock error, is common to all SV's. The remaining four error types are unique to each SY The 

first two states represent user clock errors and are modeled as: 

where 

(142) f  iucikb   \    =       °   !     f  xucik„   1 
\ xUdkdr j [ 0   0 J \ xUcikdr / 

%ucikb    =   range equivalent of user clock bias 
xudkdr   —   velocity equivalent of user clock drift 

The initial state estimates and covariances for these states were chosen to be consistent with previous 

AFIT research [7,16,58,75] and are: 

f %ucikb{ta)  \ 
\  XUclkdr(to)   J 

and 

PlTclkb,Uclkdr (*o)      — 
9.0xl014/i2 0 

0 9.0xl010/i2/sec2 

(143) 

(144) 

Because these error sources are a function of the user equipment, they are common to all the SV's. 

Recall that each of the remaining error types is specific to each SV, denoted by a subscript j. 

The second error type is the code loop error 6PRcioop.. The code loop is part of the user 

equipment shared by all the SV's, but its error magnitude is relative to each SV The third GPS 

error type is the result of atmospheric interference with the electromagnetic (EM) signals broadcast 

by each SV specifically, ionospheric and tropospheric delay, SPRi^, and 8PRtrm. The code 

loop error, tropospheric delay, and ionospheric delay are all modeled as first-order Gauss-Markov 

processes with time constants shown in Equation (145). All three are driven by zero-mean white 

Gaussian noise with strength shown in Equation (148). The fourth error source is due to inaccuracies 
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of the clocks on board the individual SV's, 6PRscikj ■ The final GPS error source is based on line- 

of-sight errors between the SV's and the receiver, 6xSj, 6ySj, and 8za.. 

6PRch 

SPRtropj 
SPRionj 

SPRsclk,    >     = 

6zSi 

with initial co-variance values given by 

-1 0 0 
0 
0 
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1 
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0 0 0 0 < 
0 0 0 0 
0 0 0 0 
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6ySj 

SZs, 

> f                  \ 

WtTOPj 
wiortj 

> + < 0      } 
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(145) 

GPS    = 

0.25 ft2 0 0 0 0 0 0 
0 1.0 ft2 0 0 0 0 0 
0 0 1.0 ft2 0 0 0 0 
0 0 0 25 ft2 0 0 0 
0 0 0 0 25 ft2 0 0 
0 0 0 0 0 25 ft2 0 
0 0 0 0 0 0 25 ft2 

(146) 

(where all but the PGps(3,3) term have stationary characteristics. Though this value may seem 

strange, it was taken directly from [58]) and noise means and strengths given by 

E[wGPS(t)] = 0 (147) 

0.5 0 0 0 0 0 0 
0 0.004 0 0 0 0 0 
0 0 0.004 0 0 0 0 
0 0 0 0 0 0 0 ft2 /sec ■ 6{T) 

0 0 0 0 0 0 0 
0 0 0 0 0 0 0 
0 0 0 0 0 0 0 

E\wGps{t)vrGPS{t + T)\   - 

(148) 

The full 30-state GPS dynamics matrix is not shown explicitly but may be easily constructed by 

augmenting Equation (142) and four copies (one for each SV) of Equation (145). 
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4.2.3.2 The GPS Truth Model and Filter Design Models 

Research has shown [54,58] that the two user clock error states provide a sufficient filter model 

for GPS. The primary argument is that the errors modeled for the 28 other GPS states (assuming 

four SV's) are small when compared to the user clock errors which are common to all SV's. By 

increasing the dynamics driving noise and re-tuning the filter, the overall performance of the inte- 

grated navigation system can be maintained. The GPS truth and filter models used in this research 

are given by Equation (142) plus noise: 

f   XUclkh    \    _     [°    1 1   f   xUclkh    1    ,    f   wclkb    1 /14m 
\ xUdkdr j [ 0   0 J \ xUclkdr j     \ wdkdr J 

4.2.3.3 The GPS Measurement Model 

The pseudorange measurements available to the GPS receiver are the sum of the true range, 

several error sources, and a random noise: 

PRGPSj = PRt, + SPRcloopj + SPRtropj + SPRion, + SPRsdk, + SPRUclk - Vj       (150) 

where 
PRGPS      =   GPS pseudorange measurement, from SVj to user 
PRtj = true range, from SV,- to user 
bPRdoapi — range error due to code loop error 
SPRtropj = range error due to tropospheric delay 
SPRionj = range error due to ionospheric delay 
SPRscikj = range error due to SVj clock error 
SPRudk = range error due to user clock error 
VJ =   zero-mean white Gaussian measurement noise, Rj = 9 ft2 

Because PRt is not available to the filter, the difference between GPS pseudorange and INS- 

indicated pseudorange will be taken eventually to eliminate this term. First, the satellite position 

vector Xs and the user position vector X^ are defined as: 
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Xu=< Xs = { 
xs 

Vs (151) 

where the superscript e denotes coordinates in the earth-centered earth-fixed (ECEF) frame. The 

pseudorange from the user to the satellites calculated by the INS, PRINS, is the difference between 

the GPS/INS-calculated user position, Xu, and the satellite position given by the ephemeris data, 

Xs: 

PRINS   =   |Xtr-Xs| 
Xu 

e 
xs 

e 

I yu r _ I Vs > 

zu [ zs  J 
(152) 

An equivalent form of Equation (152) is: 

PRINS = \/{xu - xs)2 + (yu - ysf + {zu - zs)2 (153) 

With perturbations representing errors in Xu and Xs, Equation (153) can be written in terms of the 

true range via a truncated first-order Taylor series: 

PRINS   =   PRt + 
dPRINS(Xs,Xu) 

dXs 
■6XS 

(Xs,Xc/)„ 

(154) 

+ dPRINS(XS,Xy) 
dXu 

SXu 
(Xg,Xy)„ 

The solution for PRINS is found by evaluating the partial derivatives of Equation (153) to get: 
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PRINS   =   PRt 
%s — %u 
\PRINS\_ 

6xxj 
ys-yu 
\PRINS\ 

Syu- 
zs — zu 
\PRINS\ 

Szu 

+ xs —xu 
\PRINS\ 

6xs + 
ys -yu 
\PRINS\ 

Sys + 
zs — zu 
\PRINS\_ 

ÖZs 
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Finally, the truth model GPS pseudorange difference measurement is given as: 

Sz PRINS - PRGPS 

8yu 

öys + 

zs ~Zu 

]PRlNs\ 

zs — zu 
\PRINS\ 

Szu 

■Szs 

(156) 

SPRcloop - SPRtrop ~ SPRion - SPRSclk - SPRudk + v 

The user position errors in Equation (156) can be derived from the first three (position error) states 

of the filter or truth model using an orthogonal transformation [6]. 

The reduced order truth and filter design measurement models for the GPS measurement do 

not contain terms for the errors due to code loop variations, atmospheric delays, satellite clock 

deviations, or errors in ephemeris-given satellite position. The filter GPS measurement model can 

be written as: 
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Y\P^ ■INS] 
bzv - SPRudk + v 
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4.3 Event Models 

This section discusses the methods used to model the event changes in the computer simula- 

tions, and it parallels the discussion presented by Miller [53]. Interference/jamming is modeled as a 

sudden increase in the measurement noise associated with all four SV's, resulting in lower carrier- 

to-noise ratios, C/N0, in the GPS receiver This event is induced in all SV measurements because 

interference/jamming is assumed to occur at the receiver, which will affect all four channels simulta- 

neously. The interference noise variance, Rint, is added to the truth model measurements' Rj values 

(see discussion of Equation (150)) to simulate real-world interference and will be allowed to take 

on selected values within the interference parameter space spanned by the MMAE filter bank. Em- 

phasis will be placed on demonstrating the capability of MMAE to detect and identify interference 

events of unspecified magnitude quickly. GPS jamming is used to refer to the total loss of useful 

GPS transmissions due to very large signal interference. A GPS jamming event is well-modelled 

(and much more easily modelled) via very large measurement noise. When the MMAE algorithm 

detects very large diagonal elements in real-world measurement noise covariance matrix R, then 

the corresponding measurements will be very lightly weighted by the elemental Kaiman filters; the 

effect is essentially the same as if those measurements were never received, hence the use of the 

term "interference/jamming.'' The system measurement noise covariance matrix is given by: 

RR 'alt 

R = 

RGPS 

0 

RGPS 
RGPS 

0 

RGPS 

(158) 

Rßa 
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where RGPS is the product of the nominal GPS measurement noise variance, RQ, and either a true 

multiplier, a*, or a filter-assumed multiplier, a,. 

RGPS -{ 
%-Ro   ,   for truth model 
ajRo   ,   for filter models 

(159) 

Ro = Qft2 

1 < &t,j < 2000 

Previous research [58,75,77] determined reasonable choices for the nominal GPS measurement 

noise and the range for the noise multiplier as: 

(160) 

Since the GPS measurement noise will be chosen as the scalar parameter for estimation, future 

notation will indicate values for the minimum and maximum allowable parameter values as: 

amax = 2000 

Table 4 shows the six test cases used in the performance analysis. The entries in the table 

represent the true interference/jamming levels (multiplier values, a*, on the four diagonal terms of 

Rt corresponding to the GPS measurements) for each case and the time in seconds when a parameter 

change occurred. The simulations spanned 200 seconds of flight time (3700 - 3900 sec) out of a 

2-hour flight profile generated by PROFGEN [56]. 

Table 4. Simulated Test Cases (Interference/Jamming Levels) 

Time (sec) Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 

3700 1 1 1 1 2000 1 
3750 2000 1000 850 500 1000 1 
3800 2000 1000 850 1000 500 1 
3850 1 1 1 2000 1 1 

The first three test cases represent various levels of simple interference/jamming. Case 1 in- 

duces the maximum level of interference/jamming being considered, case 2 tests the algorithms 

against an intermediate level of interference, while case 3 was added to provide a fair comparison 

of the algorithms. This will be discussed in detail later, but the basic idea is that case 2 induces an 

interference level and thus a true parameter value that almost perfectly matches one of the filter- 
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assumed parameter values in the fixed-bank MMAE. It is also important to select a true parameter 

value that does not match any of the fixed-bank filter-assumed parameter values in order to compare 

the performance of the fixed-bank MMAE against the moving-bank algorithms properly. Cases 4 

and 5 allow analysis of the algorithms in the presence of relatively small parameter changes and 

identify the differences in performance when the parameter value is increasing versus decreasing. 

Finally, case 6 provides a baseline indicating the level of state estimation performance achieved in 

the environment without any interference/jamming corruption. 

The simulated flight profile being implemented is illustrated in Figure 38. Notice the contin- 

ual drop in altitude toward ground level, indicating that the landing portion of the flight profile was 

used. A fixed-bank MMAE and four moving-bank MMAE algorithms discussed further in Sections 

4.6 -4.10 were analyzed for each of the six test cases. This will provide results for a conventional 

MMAE (see Figure 6 on page 8) used to provide state and parameter estimates simultaneously. How- 

ever, all the algorithms have been tuned and otherwise adjusted (such as the selection of threshold 

values) to enhance parameter estimation, leaving precise state estimations as a secondary objective. 

This includes applying the modified Sheldon discretization optimized for parameter estimation in 

lieu of the discretization optimized for state estimation, in cases where a Sheldon discretization is 

performed. The motivation for focusing on parameter estimation is the intent to utilize the M3AE 

architecture (see Figure 7 on page 9) for the final state estimation. Fortunately, all the data from both 

the conventional MMAE and the M3AE is available; so analysis will be conducted on both. Many 

of the case studies produce similar trends, so the discussion of some cases will be brief. However, 

each case presented did identify at least one strength or weakness of a given algorithm and will be 

presented in the section relative to that algorithm. Although some comparisons will be drawn be- 

tween algorithms, final conclusions will be stated in Chapter 5. 
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4.4 Data Presentation 

The simulation data is presented through four types of plots and a tabular listing of two per- 

formance measures. First, the state plots of aircraft latitude, longitude and altitude are plotted for 

the blended estimates provided by the MMAE and for the single filter generating the final state es- 

timates via the M3AE architecture. Each plot contains five traces. The innermost trace (—) on each 

data plot is the mean error time history for the applicable state. Mean Error is defined as the differ- 

ence between the filter's estimate of the state and the true state, averaged over the number of Monte 

Carlo runs performed. The equation describing this relationship is defined by [44]: 

N j    N 

Me(U)   =   ■^^2e4ti) = —J2^^-Xtrue^ti^ (161) 

U)=\ OJ=l 

where xw (U) is the filter-computed estimate of a given state and xtru£u, (U) is the truth model value 

of the same state, at time U, for run u>, and N is the number of time histories in the simulation (10 

in this dissertation). 

In addition to the center trace, two TOOK pairs of traces are plotted and identified as the state 

estimate error Mean ± Sigma (jix ± ax). The first pair (represented by ) is symmetrically 

displaced about the mean and as a result follows the "undulations" of Me{U). The locus of these 

traces is calculated from Me{U) ± y/Pe(U), where Pe{U) is the true error variance at time U. The 

true standard deviation is calculated from [44]: 

vtnJb)   =   VPM = X Jf^^iU) - J^^MKU) (162) 
\ a)=l 
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where N is the number of runs in the Monte Carlo simulation (10 in this case), and Mi(U) is the 

square of the mean of a given state at each time of interest. The last pair of traces (—) represent 

the filter-computed ±<Tfuter values for the same states and are symmetrically displaced about zero 

because the filter "believes" that it is producing zero-mean errors [44]. These traces represent the 

filter's estimate of its own error Thus, on a single plot, the Me(U) ± y/Pe(U) traces provide an 

indication of true performance, while the [±amer] traces additionally show how well tuned the 

filter is, i.e., how well it predicts its own errors. 

The second type of plot presents the filter probabilities over the time history for a single rep- 

resentative run. Alternatively, the mean and standard deviation of die probabilities could be pre- 

sented, but single run plots provide insights into trends that could be smoothed over or averaged 

out by the statistics of the multi-run data. Similarly, single run data may not fully represent the per- 

formance being analyzed if there are large variations from run to run. Therefore, all of the Monte 

Carlo runs were observed in the selection of this single run to ensure it adequately represents the 

overall performance. Also, a single example of the mean and standard deviation of the probabilities 

is presented to illustrate that significant variation of the probability data does not exist from run to 

run. The ordinate is labeled EF1-EF5 to identify the elemental filter number 

The third type of plot shows the time history for the parameter being estimated in this problem 

for di single representative run. The first trace (• • •) represents the true parameter value as dictated 

by the case study being simulated. The second trace (—-) shows the parameter estimate provided by 

the MMAE. The third trace (—) indicates the minimum and maximum filter-assumed parameter 

values within the MMAE bank at each sample time. This pair of traces illustrates the breadth of the 

bank, how well the bank encompasses the true parameter value and where the parameter estimate 

lies within the MMAE bank, i.e., close to an endpoint or somewhere in the middle. Alternatively, 

the mean and standard deviation of the parameter data based on all the Monte Carlo runs could be 
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presented, but the plots would be cluttered and difficult to interpret. Therefore, single representa- 

tive runs are presented for these plots with a combination of parameter data, and statistics for the 

parameter estimates are shown in the fourth type of plot. 

The fourth type of plot shows statistics of the parameter estimate error The innermost trace 

(—) on each data plot is the mean error time history for the parameter estimate. Mean Parameter 

Estimate Error, MeXU), is defined as the difference between the MMAE blended estimate of the 

parameter and the true parameter, averaged over the number of Monte Carlo runs performed. The 

equation describing this relationship is defined by [44] and is identical to Equation (161) replacing 

e^iti) = {xu(U) - xtrue^iU)} w& ^(ti) = {*MMAEw(ti) - tkrueAk)}. Similarly, the trace 

pair ( ) represents the parameter estimate error MeJti) ± yPeJti) and utilizes Equation 

(162), replacing ew(t») with ew.(ij) and Me(U) with Me,(*i). 

The performance measure used to assist in analyzing the state plots is the temporally averaged 

RMS value of the state estimation error and is given by: 

N„ 
?& eRMS     — 

Ngamp    i=Q   \ ■is ££(*«> <163) 

w-l 

where Nsamp is the number of time samples of the state estimation error Similarly, the performance 

measure used for parameter estimation analysis, e*RMS, is the temporally averaged RMS value 

of the parameter estimation error given by Equation (163) but with e^U) replaced by e^fc) = 

[äMMAE„(*i) — »true« (*»)]• 

4.5  Simulation Software 

Multimode Simulation for Optimal Filter Evaluation (MSOFE) is a general-purpose, multi- 

mode simulation program for designing integrated systems that employ optimal (Kaiman) filtering 
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techniques and for evaluating their performance [57]. The general-purpose construction of MSOFE 

allows its application to a wide variety of user-specific problems with a minimal amount of new 

software development. The United States Air Force uses MSOFE for the validation of systems that 

use optimal filtering techniques. MSOFE provides Monte Carlo and covariance simulation modes. 

Multiple Model Simulation for Optimal Filter Evaluation (MMSOFE) was developed at AFIT 

by Nielsen [59,60] to support the analysis of systems using a multiple model adaptive filter structure. 

MMSOFE is written as an extension to MSOFE and is based on the same core code. The MMSOFE 

program propagates multiple filters forward in parallel while performing the hypothesis probability 

and blending calculations required for MMAE and other multiple model algorithms. The Monte 

Carlo simulation mode of MMSOFE with 10 runs (N = 10) is used in all phases of the work. 

4.6 Fixed Bank MMAE 

4.6.1  Implementation Issues 

A fixed-bank MMAE was simulated for comparison to the various moving-bank MMAE meth- 

ods investigated in mis chapter The basic concept of the fixed-bank MMAE was presented in Sec- 

tion 2.2. A bank of 5 elemental filters was implemented, and the modified Sheldon discretization 

optimized for parameter estimation with a finite horizon of 10 samples = 10 seconds was used to 

determine the parameter values for the filters. The filter-assumed measurement noise covariance 

matrix is given by: 

RRalt 

Ri 

RGPS 0 
RGPS 

RGPS 
0 RGPS 

R-Baro 

where Rnait is given by Equation (141), RBaro = 3500 ft2 as stated in Section 4.2.1.2, and RGPS 

is the product of the nominal GPS measurement noise covariance, Ro = 9 ft2 (see Section 4.3), and 
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the filter-assumed multiplier, a.,-. 

RGPS = &jRo 

The resulting multipliers of the nominal GPS measurement noise covariance are shown in Table 5. 

Notice that filter 1 has a noise multiplier of a,- = 1. It makes sense to assign a filter the parame- 

ter value associated with the nominal case of no interference/jamming; therefore, the noise multi- 

plier for filter 1 was preassigned when performing the Sheldon discretization. Figure 39 shows the 

estimation error autocorrelation curve generated by the Sheldon algorithm for this problem. The 

parameter values determined by the Sheldon algorithm correspond to the intersection points of the 

autocorrelation curve with the abscissa. Lower bounding of the probabilities was implemented as 

discussed in Section 2.2.2. Specifically, a lower bound of p^ = 0.001 was used and applied in 

every implementation presented in this research. 

Table 5. Parameter \alues Chosen via Sheldon 

Filter j 1 2 3 4 5 
Noise Multiplier, a,- 1 188 615 1097 1660 

4.6.2   Performance 

Casel (recall Table 4 on page 149): The true and estimated parameter plot shown in Figure 40 

identifies apotential liability of the fixed-bank algorithm when the true parameter value approaches 

the maximum admissible parameter value. Notice that, although the true parameter multiplier, a(, 

equals a,^ = 2000 from time 3750 sec < t < 3850 sec, the parameter estimate, aMMAE, is 

consistently lower and bounded above by the largest filter-assumed parameter value of a5 = 1660. 

This upper bound is shown by the trace (- - -), and the lower bound trace (- - -) is hidden along the 

bottom edge of the plot.   One solution to this problem would be to set a5 = am^, but recall that 

a5 was determined via a Sheldon discretization over the parameter range amin to a^. Artificially 

setting a5 = amax would negate the benefits of using Sheldon's cost minimization technique for 
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Figure 39. Autocorrelation Curve for Constrained-Range Parameter Discretization 
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minimal parameter estimation error, as would artificially increasing amax prior to implementing 

Sheldon's algorithm such that a5 ~ 2000. The result of underestimating the true parameter value is 

illustrated by the relatively large value for the parameter estimation measure, e^MS = 203, shown 

in Table 16 of Appendix E. 

The blended state estimate errors, XMMAE, provided by the conventional MMAE are shown 

in Figure 41. All three states show the quick response of the MMAE to the abrupt change in the 

true parameter at t = 3750 sec and 3850 sec. The altitude error state plot indicates adequate tun- 

ing in this channel. In particular, the filter computed standard deviation, ±afilter, encompasses the 

majority of the error state fix ± ax values (with a notable exception at t = 3850 sec, at the time of 

the second abrupt change in the true parameter value). An important characteristic of the altitude 

error state plots is the obvious "tapering down" of both the \ix ± ax and ±(Tfuter values over time. 

Recall the gradual descent in altitude shown in Figure 38, and the dependence of the radar altime- 

ter's noise variance on this altitude, as seen in Equation (141). This combination results in radar 

altimeter measurements which are continually improving over time in terms of their accuracy (i.e., 

the radar altimeter becomes more effective as it approaches ground level, and its associated mea- 

surement noise variance is decreasing). Also, note that the size of the "sawtooth" created by the 

±<rfilter values increases over time. This increase implies that the measurement update is having a 

larger (positive) impact on the error state estimates and makes sense since a decreased measurement 

noise variance infers an increased reliance on the measurement data. These accurate radar altime- 

ter measurements directly improve the altitude state estimation performance, as seen in the results 

throughout this chapter The latitude and longitude error states are also well tuned in the time frames 

of t < 3750 sec and t > 3850 sec (without interference/jamming) with the exception of some tran- 

sient behavior around t = 3850 sec. These transients result from the time needed by the MMAE to 

converge on the true parameter value. The filter probabilities plotted in Figure 42 indicate that 5 
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sample times (3850 sec to 3854 sec) are needed before significant probability weight transfers from 

filter 5 to filter 1, i.e., p5 = 0.9948 -> 0.001 while pi = 0.001 -+ 0.9954. During this transfer 

time, the error state estimates degrade, resulting in an increase in the relative mean and variance 

values. Additionally, once the MMAE has converged on the best filter-assumed parameter match 

to truth, several more sample periods are required for the state estimate errors to converge back to a 

zero-mean condition. 

Although the probability plot is only shown for 1 of the 10 Monte Carlo runs, this trend is 

consistent across all the runs, as illustrated by the mean and mean ± one standard deviation of the 

probabilities shown in Figure 43. Comparison of Figures 42 and 43 indicates that the single run data 

are representative of the mean probability values (trace—), and the relatively small standard devi- 

ations (trace ) in Figure 43 indicate minor variations in the data from run to run. The latitude 

and longitude error states are somewhat conservatively tuned (i.e., the filter-computed ±(rjuter val- 

ues overestimate the true \ix ± <rx values) when the interference/jamming is present (3750 sec < t 

< 3850 sec) for both the MMAE and M3AE error state estimates (see Figures 41 and 44). Figure 

40 shows that äMMAE is biased low with respect to at (i.e., the measurement noise covariance is 

estimated lower than truth), yet the M3AE error state estimates indicate conservative tuning of the 

single Kaiman filter being sent these parameter estimates. This would make sense if the parame- 

ter estimate were biased high such that the single Kaiman filter assumes too high a value for the 

covariance values associated with the GPS measurement noise. This conservatism will be evident 

in many case studies for many of the algorithms, so further discussion will be presented here with 

emphasis on the M3AE error state estimates given below. The relatively benign flight environment 

is seen from the flight profile in Figure 38. Notice that the latitude and longitude are gradually 

changing and monotonic, resulting in accurate representation of the system dynamics by the filter 

models. Given a more turbulent flight profile and filter dynamics models not adequately modified 
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to account for this high level of turbulence, the dynamics models in the filters could become less 

accurate. However, the scenario in this simulation involves a less turbulent profile and a large in- 

crease in the measurement noise covariance values, resulting in more dependence on the accurately 

modeled dynamics models and less dependence on the incoming measurements. 

This can be seen mathematically from the Kaiman filter propagate and update equations re- 

peated here. 

x(tr) = *(ti, U-i)±(tti) + Bafe-Oufe-i) (164) 

K(ti) = P(t7)nF(ti) [H(ti)V(t;)HT(U) + R(0]_1 (165) 

x(i+) = ±(t.) + K(U)[Zi - U(U)±(tr)} (166) 

Notice that, as R gets larger, as in the interference/jamming case, the gains K decrease, resulting in 

less weight on the measurements, z, and more reliance on the propagated state estimates, ±(t7), in 

determining the updated state estimates, x(i+). Furthermore, since the filter and truth models are the 

same with the exception of the noise parameter being estimated, the need for accurate measurements 

is lessened versus the case in which the filter models are a reduced-order version of the truth model. 

Therefore, although error states 1 and 2 do not appear particularly well tuned, this does not result in 

significant degradation of their estimates and large variations in the estimation errors. 

The final error state estimates provided by the M3AE architecture are shown in Figure 44. The 

error state estimation measure, ex
RMS, shown in Tables 17-22 of Appendix E, indicates a consid- 

erable improvement in the state estimates resulting from the M3AE approach. This is primarily due 

to the reduction of the transient behavior around t = 3850 sec. The parameter estimate converges 

toward truth within a few sample periods, allowing the single filter, which uses this estimate, to 

adapt its measurement noise covariance tuning quickly, resulting in smaller standard deviations for 

the error state estimates. Observation of the M3AE error state estimates reveals conservative tuning 

present from 3700 sec < t < 3750 sec. This is a result of the parameter being estimated much higher 
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than truth (äMMAE > at), as seen in Figure 45. The probability lower bounding requires that all 

the elemental filters, even those that are clearly far from truth, contribute to the blended parameter 

estimate given by: 

j 

3=1 

Since some of the filters assume large parameter values, a,-, the blended estimate is biased high in 

the unjammed environment and causes the conservative tuning of the M3AE estimates. A simple 

solution to this conservative tuning will be presented in Section 4.11. 

Now that the conservative nature of the M3AE state estimates is understood when aMMAE > 

a*, a second issue stems from the M3AE error state estimates being more conservatively tuned than 

their associated MMAE error state estimates. Recall that the M3AE error state estimates are func- 

tions of aMMAE which is passed from the MMAE to the single Kaiman filter. More precisely, the 

M3 AE error state estimates are generated by a Kaiman filter which assumes a parameter value equal 

to aMMAE- Furthermore, aMMAE is a function of the elemental filter probabilities, pj, and the filter- 

assumed parameter values, a,-. Similarly, the MMAE error state estimates, XMMAE, are functions 

of these same filter probabilities, pj, and the error state estimates generated by each of the elemen- 

tal Kaiman filters, it,-. The natural question that arises is, "Given that both architectures utilize the 

same filter probabilities, pj, why are the M3AE error state estimates more conservatively tuned than 

their associated MMAE error state estimates?" The research by Miller [53] capitalized on the fact 

that these two sets of state estimates would not be the same and used this as a motivation for imple- 

menting the M3AE architecture. Particularly, for the case of coarse discretization, a single Kaiman 

filter based on a good parameter estimate, aMMAE, is superior to any linear combination of state 
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estimates from a bank of Kaiman filters, all of which are based on poor a, values. This also relates 

directly to the observation that M3AE greatly outperforms MMAE only when there is significant 

blending of more than one elemental filter to produce äMMAE (thereby very different from any of 

the a/s currently in the bank). However, the question raised above has yet to be addressed and is a 

natural extension to Miller's research [53]. 

Further clarification is needed for the performance of the M3AE error state estimates during 

the time frame 3750 sec < t < 3850 sec, in which the parameter estimate is less man truth (i.e., 

&MMAE - 1655 while at = 2000), and a bias high of the parameter estimate cannot be identified as 

the cause for the conservative tuning. Typically, underestimating the measurement noise covariance 

would result in a less conservatively tuned filter, and the filter-computed ±(yfüteT values would 

underestimate the true fxx ± ax values. The previous paragraphs explained mat the conservatism 

was due to a less turbulent profile and a large increase in the measurement noise covariance values. 

This concept still holds here despite the underestimation of the true parameter value. The reason 

is that, with a* = 2000, the GPS measurements have been effectively eliminated, and the previous 

discussion identified that the error state estimates (for states 1 and 2) become a function of the 

dynamics model. Again, significant degradation of the error state estimates does not occur in this 

benign flight profile with the exception of a gradual increase in the true error variance resulting 

from INS drift (i.e., the GPS is not providing any feedforward corrections to the INS). Similarly, 

with aMMAE - 1655, which is a large underestimation of a* = 2000, the GPS measurements have 

still been effectively eliminated and the filter tuning appears conservative. Additional simulations 

(not presented here) were conducted with very small interference levels such as a* = 10 to verify 

that mis conservatism could be removed in cases in which the resulting äMMAE was less than at but 

not so large as to eliminate the effects of the GPS measurements. 
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Case 2: Additional insights into the performance of the fixed-bank algorithm are gained by 

observation of the parameter estimate and parameter error plots for this case; recall from Table 

4 (page 149) that the step change is from 1 to 1000 on the parameter, rather than 2000 as in the 

previous case. The plots of the error state estimates look essentially the same as in case 1, and the 

only discernible difference is a slight reduction in the performance measure e^^ for all three states. 

Figures 46 and 47 illustrate the interaction between elemental filters 3 and 4 in the tracking of at. 

First, the parameter estimate seems somewhat erratic from t = 3750 sec to 3795 sec, then settles 

on a value that is biased high with respect to at. The parameter error mean ± 1 standard deviation 

plot reinforces this observation with a mean value for the error that is rather dynamic immediately 

after the interference/jamming is induced but essentially constant after t = 3795 sec. Similarly, the 

standard deviation is initially large, then shrinks considerably once the mean value settles down to 

a constant value. The probability plots help explain the results above by showing how filters 3 and 

4 compete for the probability weight from t = 3750 sec to 3795 sec, followed by convergence to the 

more conservatively tuned filter (EF4). Recall that filters 3 and 4 have assumed parameter values 

of 615 and 1097, respectively, and the true interference/jamming level is at = 1000 for this case 

study. Therefore, the fixed-bank performance which converges to filter 4 makes sense. Additionally, 

having an elemental filter assume a parameter value mat is very close to the true parameter value 

gives the appearance of superior parameter estimation, as seen by comparing the values of e^g in 

Table 16 (Appendix E) for each algorithm. This no longer holds when the true parameter value is 

not particularly close to any one filter, as seen in case 3 below. 

Case 3: In contrast to case 2, the true parameter value (at = 850) is halfway between the filter- 

assumed parameter values for filters 3 and 4, resulting in a degraded parameter estimate relative to 

that of case 2. See the increased standard deviation of the parameter error in Figure 48 and the 

increased measure values e\MS and ex
RMS in Tables 16-22 (Appendix E). The primary problem 
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is the inability of the fixed-bank MMAE to adapt the parameter choices for the filters such that it 

could converge on a filter that is a good match to truth. The moving-bank algorithms will exploit 

their ability to make the necessary adaptation of the parameter choices such that this problem can 

be avoided. 

Case 4: Recall from Table 4 (page 149) that the true parameter undergoes three successive 

increases in case 4. This case does not provide any new insights beyond those gained from cases 1 - 

3 for the fixed-bank approach, but it does help identify potential advantages of utilizing a moving- 

bank algorithm over using the fixed-bank approach. The parameter estimate shown in Figure 49 

reinforces the bias problem encountered with the fixed-bank approach when the true parameter is 

far from the fixed filter-assumed parameter values. Specifically, an upward bias (above a* = 500) 

is seen from t = 3754 sec to 3800 sec. Similarly, a downward bias (below at = 2000) is seen from t = 

3850 sec to 3900 sec, since the largest filter-assumed parameter value is as = 1660. The probability 

and error state estimate plots are shown in Figures 50,51, and 52 for completeness. The moving- 

bank algorithms will be discussed in their appropriate sections to identify their potential benefits 

over the fixed-bank approach for this case study. 

Case 5: In this case, the true parameter value takes on the same values as in case 4, but in 

the opposite sequential order As with case 4, case 5 is mainly included for completeness and to 

allow comparison to the density algorithm with expansions and increased decision delay discussed 

presently. Figures 53-56 illustrate the fixed-bankperformance. Notice the same downward biasing 

(when at = 2000) and upward biasing (when a* = 500) that occurred in case 4. Despite this negative 

tendency, the true parameter value is tracked relatively well once the MMAE algorithm converges 

to a filter that matches truth reasonably well. For instance, a* = 1000 for t = 3750 sec to 3800 

sec, and filter 4 (a,- = 1097) finally possesses the majority of the probability weight at t = 3790 

sec, resulting in a refinement of the parameter estimate. This refinement is further indicated by the 
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parameter error mean ± 1 standard deviation plot which shows a near zero mean around t = 3790 

sec. Similarly, a* = 500 for t = 3800 sec to 3850 sec, and filter 3 (aj = 615) finally possesses the 

majority of the probability weight at t = 3810 sec. However, since &j > a*, the upward bias effect 

is present as stated earlier, and it would be preferable to have greater blending of filters 2 and 3. 

4.7 MMAE Incorporating the Density Algorithm 

4.7.1   Implementation Issues 

The density algorithm presented in Section 3.1 was implemented with five elemental filters. 

Several design parameters are associated with this algorithm and summarized in Table 6. The de- 

sign parameters were determined using the guidelines and equations described in Section 3.1. The 

following paragraphs provide an explanation for these choices. 

Table 6. Design Parameters for Density Algorithm 

Ti 0.5 
T2 2 
T3 5(4) 
7 4 
T4 18.5 
% 0.1 
T6 0.9 

# of Foveal Filters 3 
Deadl 3 
Dead2 4 

Initialize New Filters Yes 
Decision Delay 1(5) 

Pmin 0.001 

Threshold Tx was found empirically such that a reasonable change in the true parameter value 

led to a movement decision. For example, if the true parameter, at, changed from at = 2000 to 

at = 1000 and the 5 filter-assumed parameter values were [a,-; j = 1,..., 5] = [1066 1300 1533 

1766 2000], then amove to the left would be desirable. In this case, M5 changed from 0.29 to 1.15, 

crossing the threshold Tx = 0.5 and implying that a move should be performed. See the logic given 
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by Equations (86) and (87). In contrast, if the true parameter changed from at = 200 to at = 300 

and the 5 filter-assumed parameter values were [a,-; j = 1,..., 5] = [1 188 261 393 523], then a 

move would not be necessary. In fact, M5 changed from 0.28 to 0.29, which does not exceed T\, 

implying that a move should not be performed. Repeated analysis of this type for several choices 

of a* and &j led to the selection of T\ = 0.5. 

Threshold T2 = 2 implies that a contraction would be executed if only 1 or 2 of the filter- 

assumed parameter values are close to the best indication of the true parameter value (associated 

with the highest value of /,(tf)|a,z(t,_1)). ^ *e other 3 or 4 filter-assumed parameter values are 

outliers with respect to truth. See the logic given by Equations (88) and (89). 

Note that when T3 = 5, the Decision Delay = 1, and when T3 = 4, the Decision Delay = 5, 

as indicated by the parentheses and explained presently. The threshold, T3, is set to values of 5 and 

4 to prevent and allow expansions, respectively. See the logic given by Equations (88) and (90). 

Threshold T3 = 5 = J implies that no expansions will be made since the condition M6 > T3 will 

never be met. Without the use of expansions, a short decision delay of 1 sample period sufficed to 

allow transients to die out after a new moving-bank decision had been made. Allowing expansions 

with the basic density algorithm implementation resulted in erratic changes of the filter-assumed 

parameter values, and these changes were detrimental to the parameter estimates as presented in 

the performance section that follows. To illustrate this point, additional simulations were conducted 

with T3 set equal to 4, resulting in expansions for some test cases. To help counter the erratic 

bank changes, a decision delay of 5 sample periods was used. This long delay time induced some 

sluggishness in the algorithms decision-making process, which is also discussed in the performance 

section. 

The scale factor, 7, was found empirically after choosing T2 and T3 such that filters far from 

the truth, in terms of their parameter values, are not counted via measure M6. For example, let 
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[a,-; j = 1,..., 5] = [1 188 615 1097 1660], at = 2000 and 7 = 10, resulting in M6 = 2 since 

filters 4 and 5 (a, = 1097 and 1660) are relatively close to truth. A better choice of 7 = 4 leads to 

Me = 1 since filter 4 is actually rather far from truth and should not contribute to the summation 

found in Equation (88) for M6. Similarly let [a,-; j = 1,..., 5] = [1233 350 525 700], at = 500 and 

7 = 4, resulting in Me = 4, which makes sense since 4 of the 5 filters are close to truth. However, 

7 = 1.5 leads to M6 = 1, implying that only 1 filter is close to truth. Although this could be argued 

as a correct assessment, letting 7 = 1.5 versus 7 = 4 would lead to unneeded contractions based on 

the logic in Equation (89) and potentially eliminate the elemental filter's residual distinguishability. 

In other words, the bank could contract to the point that all the filter models would look equally 

good, and parameter estimation would tend to degrade. This type of analysis led to the selection of 

7 = 4. 

Threshold T4 = qchisq(Px, m) was calculated via MATHCAD [39] such that the probability 

of correctly classifying good filters was 99.5% with 6 measurements sources as shown below 

T4 = qchisq(0.99B, 6) = 18.5 

This paragraph will discuss the selection of thresholds T5 and T6. Threshold T6 was found 

empirically such that a medium change in the true parameter value led to a medium movement 

decision. For example, with at changing from 1000 to 500 and filter-assumed parameter values of 

[a,-; j = 1,..., 5] = [1000 1300 1533 1766 2000], a threshold of T6 = 0.9 led to M9 = 5 = J, 

resulting in a medium move. See the logic given by Equations (97) and (104). After this medium 

move, Mg reduced to 3 or 4 (negating the possibility of another medium move) since the ratio 
T    A — 1 TM4,AMi

rM4, 
rJA7S 

used in calculating M9 fell outside the range 

l-T6<
T\AMfM*<l+Te 

TIAJ Ti 
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for one or two of the filters. Specifically, the new parameter values assigned after the move, 

[a,-; j = 1,..., 5] = [1 233 350 525 700], allowed one or two filters to appear "moderately sim- 

ilar" in terms of their likelihood quotients. Notice that at = 500 is well within the parameter span 

of the MMAE and additional medium moves are not necessary at this time. The same process dis- 

cussed here for selecting T& led to selecting T5 such that a large change in the true parameter value 

led to a hard movement decision. 

The number of foveal view filters is set equal to 3 and is motivated by having 3 out of 5 

filters focused on the true parameter value and 2 out of 5 filters positioned as outliers, maintaining a 

peripheral view of the parameter space. This is based on the design approach used in this simulated 

example problem. Recall that the contraction and expansion factors are given by 

Contraction Factor   :   K = # of desired counted (foveal) filters 

and 

Expansion Factor   :   e = „   „ ,—:—: — -r——  
# of desired counted (foveal) filters 

The dead zone region was empirically determined to prevent unneeded soft moves when the 

filter associated with the maximum probability is close to the center of the bank. Notice that the dead 

zone covers the region defined by filter numbers 3 -4; so a soft move is prevented if either filter 3 

or 4 is associated with the maximum probability weight. A single filter dead zone located at filter 

3 was found to be ineffective at preventing many unwanted movements, so larger dead zones were 

considered. Initially, a dead zone spanning filters 2-4, which is symmetric about the center of the 

bank (and is thus conceptually appealing at first), was proposed but found to prevent desired moves 

to the left. This raises a problem-dependent characteristic of an MMAE for which the measurement 
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noise covariance matrix, R, is the uncertain parameter With R as the parameter being estimated, the 

probability calculation within the MMAE will tend to favor elemental filters having conservative 

(larger) values of R (see discussion in Section 3.1.5.2). Therefore, the dead zone defined by filters 3 

-4 was more effective than a dead zone of 2 -4, since it accounted for this attribute of the MMAE. 

Filters taking on a new parameter value as a result of a moving-bank decision were newly 

initialized with XMMAE- Finally, a lower bound on the probabilities of pmin = 0.001 was used for 

consistency. 

4.7.2  Performance Without Expansion and Additional Delay 

Case 1: The adaptive nature of this algorithm is illustrated by the parameter estimate perfor- 

mance shown in Figure 57. Note that the two traces (• • •) and (- - -) are overlaid from t = 3755 sec 

to 3850 sec, causing what appears to be a trace ( ). In reality, the maximum filter-assumed 

parameter value indicated by (- - -) is equal to the true parameter value indicated by (• • •). 

Filters 4 and 5 have the strongest influence on the parameter estimate from t = 3750 sec to 

3850 sec, as realized from the probability plot in Figure 58, while filters 1 - 3 have probabilities at 

or near the lower bound of pmm = 0.001. As a result, the parameter estimate is seen to increase 

quickly (within 5 sample periods) to a value of aMMAE = 1494, which is in the neighborhood of 

truth, at = 2000. Notice that, up to this point, the parameter estimate in Figure 57 is the same as the 

parameter estimate in Figure 40. More importantly, the density algorithm invokes a soft move to the 

right at t = 3755 sec (i.e., upward on Figure 57), allowing filter 5 to assume the value a5 = 2000 

and an increase in aMMAE to 1878 in one sample period. Filter 1 also assumes a larger parameter 

value at this time, and this bank move is indicated by the trace pair (- - -) which shows an increase 

in both the minimum and maximum filter-assumed parameter values, i.e., a move right. At t = 

3782 sec, 3784 sec, and 3823 sec, the algorithm invokes contractions, resulting in further increases 
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of the assumed parameter values for filters 1 - 4 and a refinement of the parameter estimate. The 

MMAE blending of a4 = 1786 and as = 2000 still causes the parameter estimate to be biased below 

at = 2000, but mis becomes less significant as the bank is repeatedly contracted. The parameter 

estimation measure, eRMS, is shown in Table 16 (Appendix E) as being one of the most competitive 

among the algorithms. 

The MMAE blended and M3AE final state estimation errors are shown in Figures 59 and 60. 

The altitude state is well-tuned for both the MMAE and M3AE error state estimates with some 

conservatism prior to the onset of interference/jamming (t < 3750 sec) for the M3AE error state 

estimate. Again, this is due to the blended parameter estimate being biased high in the unjammed 

environment, as explained under case 1 for the fixed-bank MMAE. The primary difference between 

the results shown here and those for the fixed-bank MMAE is the lack of large transients at t = 

3850 sec for the MMAE estimates, resulting in cleaner transitions for the M3AE estimates. Recall 

the case 1 fixed-bank discussion which identified the excessive time (5 sample periods) needed by 

the MMAE to converge on the true parameter value when the interference/jamming is removed at 

t = 3850 sec. In contrast, the density algorithm converges in 3 sample periods, which is evident 

by observing the raw probability data (not shown here) along with the parameter estimate plot in 

Figure 57. This improvement in the conventional MMAE's blended estimates is passed on to the 

final M3 AE estimates, resulting in better adaptive tuning to the actual measurement noise variances, 

and smaller standard deviations for the error state estimates from t = 3850 sec to 3870 sec. 

Case 2: The parameter estimate plot in Figure 61 shows that, following a contraction at t = 

3757 sec and some transient behavior in the probabilities shown in Figure 62, the parameter estimate 

tracks truth relatively well. The state plots are not included as they look extremely similar to those 

in case 1, and the performance measures eRMS and ex
RMS (see Tables 16-22 in Appendix E) are 

more useful. 

189 



20 

-10 

-20 

 1 r 

RMS = 3.045 

w -  ./ - — ../• /. >,•„■■■> -.-•- r \ 

i\i\ 

3700  3720  3740  3760  3780  3800  3820  3840  3860  3880  3900 

-20 
3700  3720  3740  3760  3780  3800  3820  3840  3860  3880  3900 

-15 
3700  3720  3740  3760 3780  3800  3820  3840  3860  3880  3900 

Time (sec) 

Figure 59. MMAE State Estimation Errors (feet) - Case 1: Density Algorithm 
190 



20 

-20 

 1 r 

RMS = 2.426 

n r -i 1 1 r 

_i i 1 L I | I L 

3700  3720  3740  3760  3780  3800  3820  3840  3860  3880  3900 

3700  3720  3740  3760  3780  3800  3820  3840  3860  3880  3900 

-15 
3700  3720  3740 3760  3780  3800  3820  3840  3860 

Time (sec) 
3880     3900 

Figure 60. M3AE State Estimation Errors (feet) - Case 1: Density Algorithm 
191 



Parameter Truth, Estimate and Min/Max Filter Values 

2000 

1800 

1600 

„1400 

11200 |r 

11000 
E 
5  800 
co 
Q. 

6001- 

400 

200 

: 1 1 r~         i               i               i               i 1               1 

- - 

I                                            l 

I                                             l 
~ 

L                            L - 
1 
1 
r 
i 

- 

i                        : n/\n         r\n i f     u    ■ 
L "vr - 

r 
VJ - 

i 
r 

- 

h - 

1 1  1 1             1             1  1 1  I                1 

3700     3720      3740     3760     3780      3800     3820     3840     3860      3880      3900 

Parameter Error Mean +/-1 Sigma 

Lil 

CD 
CD 
E 
to 
CO 
Q. 

r\n I I I 1 1 1 1 ' J " ■ 

3700  3720  3740  3760  3780  3800  3820  3840  3860  3880  3900 
Time (sec) 
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Case 3: The plots for this case are virtually identical to those for case 2 with some improve- 

ment in the performance measures, and so they are not presented. Even more significant is the 

fact that the fixed-bank performance degrades between cases 2 and 3, whereas the density algo- 

rithm performance does not. Recall the discussion presented earlier for the fixed-bank performance 

which identified that this degradation results from the true parameter value lying between two filter- 

assumed parameter values. The ability of the density algorithm to adapt its filter-assumed parameter 

values accounts for the improved parameter estimation measure between cases 2 and 3, i.e., e\MS 

improves from 146 to 110. In contrast, the fixed-bank value for e\MS increases from 71 to 128. 

As expected, e\MS associated with the density algorithm is better than e*RMS associated with the 

fixed-bank for case 3, i.e., 110 < 128. 

Case 4: Some benefits of this moving-bank algorithm versus the fixed-bank approach are 

highlighted in mis case study. The density algorithm provides a vehicle to modify the filter-assumed 

parameter values such that one filter is a particularly good match to truth. This is seen by comparing 

the parameter estimation performance plots shown in Figures 49 and 63 for these two algorithms. 

In particular, notice the bank motion illustrated by the trace pair (- - -), and the density algorithm's 

ability to "surround" the true parameter value with a bank that has contracted about that true para- 

meter value. The two time frames when the fixed-bank suffers a bias on the estimate are from t = 

3754 sec to 3800 sec and again for t = 3850 sec to 3900 sec. A series of two contractions by the 

density algorithm at t = 3751 sec and 3757 sec allows the moving-bank MMAE to provide a refined 

estimate of the parameter as compared to the fixed-bank MMAE. Similarly, a hard move right at t = 

3845 sec followed by a soft move right at ? = 3852 sec brings the filter-assumed parameter value of 

filter 5 close to truth, and this filter obtains the majority of the probability weight, as seen in Figure 

64. However, the hard move right is partially made necessary by an undesirable medium move left 

at t = 3843 sec. This is due to unusually large (or small) noise samples at each update time for the 
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particular stochastic process sample used for this simulation run, which induced the medium move 

left and identifies a potential liability in the density algorithm. Invoking a decision delay will help 

remove oscillatory bank movement (i.e., move left then right then left ...), but mis will not over- 

come unusually larger (or small) noise samples. An attempt was made to smooth out the effect of 

such noise samples by averaging data samples of the density /^z over 2 to 10 samples. Unfor- 

tunately, the densities for a given filter affected by these unusually large noise samples could vary 

by several orders of magnitude, requiring extreme smoothing which then resulted in unacceptable 

decision delays for cases in which these noise samples were not a problem. These unusual noise 

samples are problematic for all the case studies at t = 3820 sec, since the same random seeds which 

initialize the random number generator were used for each case. 

Despite the density algorithm's ability to avoid some of the bias effects plaguing the fixed-bank 

MMAE, some biasing is encountered in the regions oft = 3800 sec to 3817 sec and 3823 sec to 

3835 sec. This motivates a recommendation in Chapter 5 to pursue a methodology which estimates 

or somehow accounts for this biasing. The discussion in Section 3.1.5.1 focused on the residual 

covariance matrix given by 

A^Hj-PjHj + R,- 

and identified that large values of Rj in the scalar measurement case or large eigenvalues of Rj with 

m > 1, resulted in more conservative tuning. The discussion then described the MMAE's tendency 

to favor more conservatively tuned filters. The explanation for this tendency was clear for cases 

where the measurement noise, R.,, is the uncertain parameter However, the dynamics driving noise 

covariance, Qdj, also determines how conservatively tuned the filters are and may produce the same 

biasing effect. Furthermore, uncertainties in the output matrix, Hj, or the state transition matrix, 

*j, could produce this same biasing trend as they effect the calculation of Aj shown above either 

directly in the case of Hj or indirectly through P., in the case of *j (see Equation (4) on page 14). 
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Finally, it is not anticipated that uncertainties in the control input matrix, Bdj, will produce this 

same biasing effect. Observation of Equations (3) - (8) reveals that Bdj simply impacts the state 

estimates, £(*,), and is not included in the equations related to filter tuning, i.e., Equations (4), (5), 

(6), and (8). 

When comparing the error state estimates for the MMAE shown in Figure 65 to the error 

state estimates for the M3AE shown in Figure 66, it is clear that the M3AE does not significantly 

outperform the MMAE. In fact, the MMAE estimates are actually better for states 1 and 2. One of 

the conclusions stated by Miller [53] is that the M3 AE will significantly outperform the MMAE only 

when there is significant blending of more than one elemental filter. Otherwise, the MMAE and 

M3AE might perform equally well, with no strong preference for the M3AE over the MMAE. This 

conclusion holds true for this case in which significant blending is not present (see Figure 64). 

In contrast, Miller [53] anticipated that a moving-bank algorithm (which can be centered in 

the right neighborhood of the true parameter and contracted to a small enough span such that mere 

is effective blending of more man one elemental filter) would provide the improvements possible 

with the M3AE architecture versus the MMAE, to a greater degree than a fixed-bank algorithm 

with a bank that spans the entire admissible parameter space for all time. Recall Figure 57 (case 1), 

which shows that the moving-bank decisions reduce the amount of the parameter space spanned by 

the filter-assumed parameter values. The result is significant blending between filters 3 and 4, as 

shown in Figure 58 and significant improvements in the latitude and longitude state estimates for 

the M3AE over the MMAE (see Figures 59 and 60). 

One could further conjecture that blending two elemental filters in the scalar parameter case is 

more beneficial than blending three elemental filters in terms of M3 AE versus MMAE performance, 

since the distance between äMMAE and the a/s for the two-filter case would be greater than the 

distance between aMMAE and the a/s for the three-filter case (particularly the middle of the three 
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a,'s). This conjecture requires validation through simulations and/or support through an analytical 

proof, which have not yet been accomplished. 

Case 5: The density algorithm suffers erratic bank movements for this case, as seen by the 

parameter estimate plot in Figure 67. For example, the following series of movements results in 

oscillations of the parameter estimate about the true parameter value of a* = 1000: 

Time (sec) Movement Type 
3761 medium left 
3764 soft right 
3772      ' soft left 
3784 soft right 
3791 medium left 
3793 soft right 

The probability plot in Figure 68 indicates the MMAE's confusion about which filter is the best 

match to truth over the time frame t = 3750 sec to 3850 sec. The parameter estimation performance 

prior to and after this series of erratic movements is very good as the bank is contracted about the true 

parameter value. In order to account for the erratic behavior, the decision delay time was increased, 

as presented in the next section. The state estimation performance is shown for completeness in 

Figures 69 and 70. 

4.73  Performance With Expansion and Additional Delay 

Case 1: The parameter plot shown in Figure 71 illustrates the different decisions made by 

the density algorithm with expansions available and an increase in the decision delay from 1 to 5 

sample periods. Specifically, the soft move right is delayed from ? =3755 sec with the basic density 

algorithm to t = 3759 sec due to the increased decision delay. Also, expansions occur at t = 

3781 sec and 3831 sec, but the parameter estimate is seemingly unaffected by these decisions since 

filter 5 possesses most of the probability and its parameter value remains unchanged throughout the 
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expansions (see Figure 72). The trace pair (—) shows the expansion as a reduction in the minimum 

filter-assumed parameter value and no change in the maximum value. 

Note the slight sluggishness induced in the parameter tracking as a result of the increased 

decision delay of 5 samples. This sluggishness is easily seen by comparing Figure 57 and 71 at 

the onset and removal of the interference/jamming, i.e., t = 3750 sec and 3850 sec. Also, note the 

slight increase in e*RMS from 80 to 85, which is shown in Table 16 (Appendix E), for the density 

algorithm without and with the additional delay, respectively. Furthermore, the same transients in 

the MMAE error state estimates that plagued the fixed-bank MMAE for this case exist around t = 

3850 sec. Again, this is due to the time needed by the MMAE to converge on the true parameter 

value. The final error state estimates provided by the M3AE approach are only slightly degraded as 

compared to the density algorithm performance without the additional delay (see Figure 73). 

Cases 2 and 3: For these cases, the density algorithm performance is relatively unchanged 

by the addition of expansions and increased decision delays, and the results are not presented. The 

MMAE error state estimates still surfer some transient behavior once the interference/jamming is 

turned off, but the M3AE error state estimates are nearly identical. 

Case 4: The increased decision delay prevents some of the erratic bank movement encountered 

with the basic density algorithm when at undergoes repeated small step increases, as discussed 

earlier This is particularly evident when comparing the parameter estimate plots shown in Figures 

63 and 74 at t = 3818 sec to 3845 sec for each version of the algorithm. However, the bank 

expansions induce similar erratic behavior as seen from the following sequence of decisions when 

the true parameter remains unchanged at at = 2000: 
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Time (sec) Movement Type 
3866 soft move right 
3872 expand 
3878 soft move right 
3891 contract 
3897 expand 

The state estimation performance is very similar for both versions of the density algorithm, as seen 

by comparing Figures 65 and 66 to Figures 75 and 76. 

Case 5: Recall that the basic density algorithm suffered erratic bank movements when at 

undergoes a sequence of small step decreases, as described earlier for this case study. Comparison 

of Figures 67 and 77 shows the significant improvement gained by invoking the additional decision 

delay. This version of the density algorithm outperforms all other algorithms tested in terms of the 

parameter estimation measure e\MS- 

4.8 MMAE Incorporating the Density Algorithm with Sheldon Discretization 

4.8.1  Implementation Issues 

Section 3.1.5.4 detailed the concept of combining the decision making process of the density 

algorithm with the discretization process of the on-line Sheldon algorithm. As before, five elemental 

filters are used with a lower bound on the probabilities of pmiR = 0.001. A look-up table of parame- 

ter values is created off-line using the modified Sheldon algorithm for optimal parameter estimation 

with finite horizon. The density algorithm provides the Sheldon algorithm with two endpoints over 

which to discretize the five filter-assumed parameter values. Each pair of endpoints and their asso- 

ciated five filter-assumed parameter values constitute a seven-element row in the table, i.e., there 

are seven columns in the table. Recall that the admissible parameter range is 1 < a.,- < 2000, so 

each entry (row) in the table must assume values for the endpoints within this range. In order to ac- 

count for every possible endpoint value, a table with an infinite number of entries would be needed. 
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Since this is not practical, discrete values for the endpoints are arbitrarily chosen, beginning with 

uniformly spacing the endpoints over the parameter range for simplicity. First, 18 left endpoints 

are chosen over the range 9 ft2 < RGPS < 17,000ft2 in increments of 1000/t2. This depicts 

RGps = &1Ro over the parameter range 1 < ai < 1889 in increments of 111 where the superscript 

on Rl00 indicates the filter number The increment value of 1000/t2 is purely ad hoc with the 

goal of selecting a reasonable number of table entries that are not too far apart. A smaller increment 

size might be necessary for problems with higher sensitivity to the parameter value. Note the largest 

value for the left endpoint is arbitrarily chosen less than amax since the density algorithm will not 

select a left endpoint equal to amax. For each left endpoint, right endpoints are selected over the 

range RGpg + 2000/i2 < RGPS < 18,000/i2 in increments of 1000/<2 (again chosen in an ad 

hoc fashion and depicting RGPS = &5R0). The two exceptions are (1) with RGPS = 9ft2, the first 

right endpoint is 2000/t2 versus 2009/i2 and (2) with RGPS = 17,000 ft2, the only right endpoint 

is 18,000/t2. For example, with a left endpoint of RGPS = 9ft2 there are 17 associated right end- 

points (and thus 17 table entries or rows) with values of Rb
GPS = 2000,3000,..., 18000/t2. Sim- 

ilarly, with RGPS = 15,000/i2 there are two associated right endpoints (and thus 2 table entries or 

rows) with values of R5
GPS = 17,000/<2 and 18,000/t2. Additionally, the smallest value for the 

right endpoints is arbitrarily chosen greater than sw since the density algorithm will not select a 

right endpoint equal to amia. The total number of right endpoints is 17+16+,..., +2+1 +1 = 154, 

resulting in 154 entries or rows in the table. Therefore, the table size is 154-by-7 parameter values. 

The design parameters used here are the same as those used for the basic density algorithm 

summarized in Table 6 (page 178). This allows for a direct comparison of the pros and cons of 

implementing the Sheldon discretization over the simple uniform spacing techniques used in the 

basic density algorithm. The performance section which follows (see Section 4.8.2) indicates the 

inability of this algorithm to react to gradual decreases in the level of interference/jamming. This 
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motivated the use of expansions (see Section 4.8.3) which resolve the problem but require the same 

longer decision delay time of 5 sample periods used with the basic density algorithm in Section 

4.7.3 to counter the erratic bank changes. 

4.8.2  Performance Without Expansion and Additional Delay 

Case 1: Figure 78 shows the performance of this algorithm in terms of the parameter estimate. 

The traces for the minimum and maximum filter-assumed parameter values (- - -) show a series 

of five soft moves to the right at times t = 3755, 3764, 3782, 3784, and 3792 sec, respectively, 

as determined by the density algorithm. The resulting parameter estimate is steadily increased but 

consistently lower than truth because it is upper bounded by the parameter value assumed by filter 5. 

This upper bound comes directly from the Sheldon discretization which never chooses a parameter 

value for a filter equal to the maximum admissible parameter value. The cost minimization process 

precludes such a choice since doing so would result in larger average values for the mean squared 

estimation error given by Equation (60). This is discussed further in cases 4 and 5, and a simple 

solution is presented that allows the bank to traverse the entire range of parameter values. The same 

trends in the MMAE and M3AE error state estimates identified for the density algorithm without 

expansions are present here, so the nearly identical plots are not shown. The e* MS values also 

indicate the similarity in their performance. 

Case 2: The decisions made here by the density algorithm with the Sheldon discretization 

(a single contraction at t = 3757 sec) parallel those for the density algorithm without the Sheldon 

discretization. However, the parameter estimate is consistently biased low, as seen in Figure 79, or 

biased high for other sample runs due to the choices of the filter-assumed parameter values provided 

by the Sheldon algorithm. Although the MMAE tends to favor the more conservatively tuned filters, 

as discussed in Section 3.1.5.1, it will assign greater probability to less conservatively tuned filters 
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Figure 78. Parameter Estimation Performance -Case 1: Density / Sheldon Alg. 
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on occasion, resulting in a biased low parameter estimate for a given sample run. The parameter 

error mean in Figure 79 is primarily negative when the interference is present, illustrating that a bias 

high was more common over the 10 Monte Carlo runs. In fact, observation of the 10 runs reveals 

that six of the 10 runs followed the tendency to bias the parameter estimate high. 

As with the fixed-bank algorithm, the Sheldon discretization often chooses parameter values 

for the filters which lie above or below at rather than very close to it. This results in a bias in 

the parameter estimate not often encountered with the basic density algorithm which uses uniform 

discretization. Recall that soft moves, expansions and contractions dictated by the basic density al- 

gorithm all center around the filter having the maximum probability. This provides the opportunity 

for the center filter to become well matched to truth after a series of such decisions. The Shel- 

don discretization essentially ignores the maximum probability filter since a cost minimization is 

performed over a parameter range (a^n to amax), which is dictated by the density algorithm, to de- 

termine the new filter-assumed parameter values. This will not, in general, lead to a filter-assumed 

value that matches truth, as discussed more fully in case 3. 

Case 3: Unlike the results in case 2 above, the Sheldon discretization combined with the den- 

sity algorithm outperforms the basic density algorithm with uniform discretization for this case. The 

parameter estimate and probability plots shown in Figures 80 and 81 indicate that the Sheldon dis- 

cretization made a fortuitous choice for the parameter value assumed by filter 3 as it matches at very 

well when interference/jamming is present. This is largely coincidental but motivates a recom- 

mendation to take the parameter values chosen by a Sheldon discretization and set the one closest to 

aMMAE equal to aMMAE- This has the potential of overcoming the bias problem encountered with 

case 2 above while taking advantage of the cost minimization provided by Sheldon's algorithm. 

This will be discussed further in Chapter 5. 
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Case 4: This case identifies an interesting attribute of the combined density algorithm with 

Sheldon discretization which is referred to as "movement-induced contractions." The density al- 

gorithm determines when a bank movement is to be made and passes the endpoints of the new 

bank to the Sheldon discretization process, which in turn provides J new filter-assumed parame- 

ter values. Since the Sheldon discretization process does not in general choose these endpoints as 

two of the new parameter values, the new filter bank will actually cover a smaller portion of the 

parameter space, resulting in a bank contraction. For example, given the endpoints a^n = 1000 

and amax = 6000, the Sheldon chosen parameter values for filters 1 - 5 are [a.,-; j = 1,..., 5] = 

[1276 2167 3698 5181 5783]. An alternative approach would be to constrain the Sheldon optimiza- 

tion routine such that the endpoints dictate two of the chosen parameter values (i.e., fix two of the 

parameter values chosen by the Sheldon routine as these endpoints) and only the inner three (J - 2) 

parameter values can affect the cost minimization. This could be viewed as defeating the purpose of 

allowing the Sheldon routine to optimize the parameter choices and was not implemented for these 

studies. However, future researchers may want to consider this idea, as recommended in Chapter 5. 

Evidence of the movement-induced contractions is shown in Figure 82 by observing the mini- 

mum and maximum filter-assumed parameter values indicated by the pair of traces (---). A series 

of four soft moves right occurs between t = 3805 sec and 3817 sec, resulting in significant contrac- 

tion of the filter bank and a maximum filter-assumed parameter value, as, which is below at. This 

trend continues throughout the simulation, causing the parameter estimate to be consistently biased 

low. 

Case 5: The movement-induced contractions described under case 4 causes severe problems 

in estimating the parameter for case 5. Notice a series of four moves right from t = 3707 sec to 3718 

sec in Figure 83. Although movement to the right is desirable in this case, the induced contractions 

cause two problems. 
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First, and somewhat less significant, is the biased low parameter estimate prior to t = 3750 sec 

when the interference/jamming level decreases. This is again caused by the Sheldon discretization 

choosing a maximum filter-assumed parameter value of as = 1913, which is less than the right 

endpoint, amax = 2000, passed by the density algorithm Furthermore, since a* = 2000, the blended 

parameter estimate is guaranteed to be less than truth. 

Second, as the bank continually contracts due to the movements and not from a normal con- 

traction decision, the filters' residuals become less distinguishable. This becomes a problem when 

the interference/jamming level decreases at t = 3750 sec, and a move left is desired but not made. 

The lack of filter residual distinguishability prevents measure M5 in Equation (86) from crossing 

threshold Ti and allowing a move left as depicted by the logic in Figure 21. This lack of distin- 

guishability is further illustrated in Figure 84 by the extremely slow transfer of the probability from 

filter 5 to filter 1 during the time frame of t = 3750 sec to 3850 sec. An expansion decision would 

be useful here but is currently suppressed. The next section will show the benefit of allowing ex- 

pansions for this case. The extreme overestimation of the true parameter value results in overly 

conservative tuning of states 1 and 2, as shown in Figures 85 and 86. 

4.8 J   Performance With Expansion and Additional Delay 

Case 1: The ability to expand the MMAE filter bank will become more useful in case 5, but its 

negative characteristics are highlighted here in case 1. Observation of the parameter plot in Figure 

87 shows the somewhat erratic behavior of the moving-bank algorithm. For example, a series of 

[soft move right - expand - soft move right - expand] occurs from t = 3807 sec to 3825 sec, even 

though the true parameter value is unchanged. In fact, the probability plot in Figure 88 shows that 

filter 5 is identified as the best match to truth (it has the majority of the probability) during this entire 

time frame. This is also illustrated in Figure 87 since the parameter estimate trace (—) overlays the 
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maximum filter-assumed parameter trace (- - -) during this time frame. This erratic bank movement 

causes degradations in both the state and parameter estimates when compared to the performance 

of the density algorithm/Sheldon discretization without expansions (see measures e^s and e%MS 

in Tables 16—22 in Appendix E). 

Of greater importance, is the severe underestimation of the parameter that exists in Figure 87. 

Again, the Sheldon discretization selects the largest filter-assumed parameter value, as, less than the 

maximum admissible parameter value, a^, resulting in an upper bound on the parameter estimate 

that is considerably less than truth. To compound the problem, the expansion process is causing 

the parameter estimate to move away (to the left) from truth by reducing the largest filter-assumed 

parameter value. This is poor choice in light of die observation made in the previous paragraph, 

that filter 5 is identified as the best match to truth, indicating a need to move right. The decision 

logic tries to compensate by invoking a move right, but the expansion that follows simply moves 

the bank back to the left. This is best illustrated from t = 3780 sec through 3830 sec. Therefore, 

a shortcoming in die current logic needs to be corrected. One simple method would be to check 

which filter has the maximum probability, and if this filter is at an edge of the current bank (i.e. ai 

or aj), then the expansion process must not be allowed to move die bank away from this filter. For 

the example shown in here in case 1, the bank would not be allowed to move left away from aj. 

Further notice that Figures 87 and 78 are significantly worse than Figure 57, in which the bank 

right edge was allowed to go all the way to at = 2000. By so doing, the parameter estimate is 

given die latitude to become much more accurate. With at = 2000, we again would want to allow 

the modified probability blending of Section 4.11 to remove artificially biased estimates due to the 

impact of lower bounds-though of less relative importance at at = 2000 than at at = 1. Finally, case 

2 will be discussed presently and shows that this artificial degradation of the parameter estimates is 
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removed entirely when the bank is allowed to span the range including the true parameter value, by 

allowing bank motion over the entire admissible region of the parameter space. 

Although time did not permit implementation of die modification to the expansion logic or 

the modified blending for these test cases, an additional simulation was conducted to illustrate the 

benefit of allowing the largest filter-assumed parameter value to exceed the true parameter value. 

This case was only simulated for this algorithm (MMAE incorporating the density algorithm with 

Sheldon discretization with expansions and additional delay), and the parameter estimate perfor- 

mance is shown in Figure 89. This case is identified as case 7 with a GPS noise interference level 

of at = 1500 for 3750 sec < t < 3850 sec. Notice that the parameter underestimation has been sig- 

nificantly reduced. Comparison of the parameter error mean values in Figures 87 and 89 is further 

evidence that the parameter estimate is no longer suffering from a large bias. The significant im- 

provement in performance shown here is strong motivation for allowing the bankmotion to cover the 

entire admissible parameter space, even though the Sheldon discretization (as implemented) would 

prevent this from occurring. Again, Chapter 5 states the recommendation to pursue well-developed 

methods that allow mis type of bank motion. 

Returning to case 1, the error state estimate plots do not reveal any additional insights and are 

very similar to the plots shown earlier for the density algorithm without expansions, so they are not 

presented. The primary indicator of performance between these algorithms is e%MS. 

Case 2: The biasing problem encountered with the combined density algorithm/Sheldon dis- 

cretization for this case is partially reduced here via bank expansions. Observe the bias high in 

Figure 90 at t = 3770 sec through 3775 sec. This is later rectified by an expansion at t = 3776 sec, 

which effectively changes the parameter discretization within the MMAE bank such that filter 4, 

which is a good match to truth, obtains the greatest probability weight, as shown in Figure 91. This 

analysis is not meant to imply that simply adding expansion decisions will ensure the selection by 
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the Sheldon discretization of a filter-assumed parameter value that matches truth well. This again 

motivates the recommendation to take the parameter values chosen by a Sheldon discretization and 

set the one closest to SMMAE equal to äMMAE- 

Case 3: The same analysis presented under case 3 for the density algorithm/Sheldon dis- 

cretization without expansions and additional delay applies here, and the performance plots are not 

presented. 

Case 4: The same analysis presented under case 4 for the density algorithm/Sheldon discretiza- 

tion without expansions and additional delay applies here, and again the performance plots do not 

warrant being shown. 

Case 5: Recall the need to allow expansions discussed under case 5 for the density algorithm/ 

Sheldon discretization without expansions and additional delay. Comparison of the parameter esti- 

mates shown in Figures 83 (no expansions) and 92 (with expansions) indicates the pros and cons of 

adding expansions to this algorithm. 

The primary benefit is the ability to respond to a decrease in the interference/jamming level at 

t = 3750 sec by expanding the bank and ensuring the filters' residuals are distinguishable. Without 

such expansions, the movement-induced contractions cause the filter's residuals to become indistin- 

guishable and prevent needed bank movements. This problem is not completely resolved, as seen 

by the series of soft moves left from t = 3782 sec to 3800 sec, which consequently contract the 

bank, resulting in a bank which is too finely discretized and lacking in filter residual distinguisha- 

bility. This point is further supported by observing the slowly changing probabilities for filters 1 

and 5 shown in Figure 93 at t = 3800 sec to 3850 sec. The problem encountered with allowing 

expansions is erratic moving-bank decisions, resulting in poor parameter tracking, as seen by the 

numerous soft moves right and expands from t = 3707 sec to 3749 sec. 
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4.9 MMAE Incorporating the Probability Algorithm 

4.9.1  Implementation Issues 

The probability algorithm presented in Section 3.2 was implemented to drive the decisions 

for the moving-bank MMAE. Again, five elemental filters were used and the probability-based 

discretization method generated a look-up table of parameter values for on-line use. The probability 

values usedby the PBDM are shown in Table 7. NotethatPX3 = 0.5andwithm=6forthisproblem, 

Table 7. Chi-Squared Probability Values 

Filter # 1 2 3 4 5 
Chi-Squared Probability \alue, Px. 0.01 0.24 0.5 0.76 0.99 

the threshold is given by MATHCAD [39] as T = qchisq(0.b, 6) = 5.348. The threshold, T, is first 

defined in Section 3.2, and the MATHCAD approach is explained in Section 3.2.3. A manual search 

for filter-assumed parameter values satisfying the probabilities in Table 7 was conducted once to 

determine Md- for filters 1,2,4 and 5. See Section 3.2.3.1 for the discussion of mis manual search 

and for the definition of M%n. A value of at = 1000 was used for the manual search since it lies 
tiZy 

close to the center of the admissible parameter space. Given more insights into the sensitivity of the 

system to a larger or smaller value for this parameter, a different choice for at might be motivated. 

Next, filter-assumed values of a,- = 1, 10, 100, 500, 1250, 1750 and 2000 were combined with 

at = 1000 to calculate Px. via numerical integration, giving the designer an idea of which filter- 

assumed values would result in the desired values for Px.. Finally, approximately 20 more choices 

for &j were needed to realize the desired Px. values, resulting in the four values of M%g shown in 

Table 8. 
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Table 8. Search Criteria 

Filter # 1 2 4 5 
Jeta 51637 25 0.414 0.2656 

Initial Guess Percentage, St 0.05 0.4 - - 

Initial Guess Percentage, Sh - - 1.3 1.5 

The search routine described in Section 3.2.3.1 automated the generation of the look-up table. 

The desired eigenvalue measures, M%g, and the initial guess value percentages for the search are 

shown for each filter in Table 8. The initial guess value percentages, 8t and Sh (see Section 3.2.3.1), 

were quickly determined through trial and error The search routine was initially allowed to begin 

the search at a^n for filters 1 and 2 and amax for filters 4 and 5. By observing the measure Meig 

(see Section 3.2.3.1) and realizing that it did not come close to the desired measure M%g until the 

guess value had reached some neighborhood of aMMAE, it was clear mat starting future searches 

at the extreme values of amin and amax was inefficient. The values for Sx and Sh simply started 

future searches such that Meig was in the neighborhood of M%g. The initial guess percentages are 

still conservative and ensure the initial guess values a; = Si ■ aMMAE and a/i = Sh • aMMAE are 

sufficiently low and high respectively. The number of guesses used in the automated search (see 

Section 3.2.3.1) was 40 (Ng = 40). Larger values for Ng did not significantly change the results of 

the search routine but did significantly increase the computer processing time required to perform 

the search. A 40-by-5 look-up table of parameter values was created for on-line use. The first 

dimension represents the 40 discrete values assumed for the true parameter value over the range 

1 < at < 1,950 at an arbitrary interval spacing of 50. Recall that RGPS = a<#o> where Ro is 

the nominal noise covariance value of 9 ft2. The second dimension represents the need to store a 

look-up value for each of the five filters. 

New filter initialization using XMMAE and a decision delay of 2 sample periods were imple- 

mented for enhanced performance. The probability algorithm's propensity to osculate about the true 
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parameter value by making repeated moves to the left and right motivated an increase in the deci- 

sion delay from 1 to 2 sample periods. Additionally, a dead zone in the form of a minimum move 

size was used to counter unwanted movements. Recall the guideline given in Section 3.2.5 to set 

the minimum move size equal to one-third the average distance from the table-stored bank centers 

to their endpoints. This led to a minimum move size = 900/3 = 300. Finally, the practice of lower 

bounding the probabilities was implemented with the previously used value of pmin = 0.001. 

4.9.2  Performance 

Case 1: The plot of the parameter estimate shown in Figure 94 indicates the relatively good 

tracking ability of this algorithm. A short convergence time of 5 to 6 samples is required for the 

algorithm to adapt to the onset of interference/jamming at t = 3750 sec and reach a parameter esti- 

mate value very close to truth. Notice a gradual increase in the minimum filter-assumed parameter 

value (- - -) from t - 3752 sec to 3762 sec, resulting from the gradual convergence of aMMAE to- 

wards at via parameter position estimate monitoring. Similarly, when the interference/jamming is 

turned off, a gradual decrease in the minimum and maximum filter-assumed parameter values is 

seen from t = 3852 sec to 3862 sec. A momentary drop in the parameter estimate at t = 3820 sec 

results from an unusually large noise sample. The wide parameter breadth of the bank (aj - ai) 

permits the parameter estimate to drop significantly, unlike the algorithms incorporating the density 

algorithm, which did not suffer such a dramatic change in the parameter estimate at this time. This 

demonstrates a potential liability of allowing the bank to maintain a broad or peripheral view of the 

parameter space. The same undesirable transient behavior described under case 1 of the fixed-bank 

performance is seen here once the interference/jamming is removed. See the blended estimates in 

Figure 95 from t = 3850 sec to 3865 sec. 
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Figure 94. Parameter Estimation Performance - Case 1: Probability Algorithm 
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Comparison of Figure 41 to Figure 95, along with their associated ex
RMS values, implies the su- 

perior performance of the fixed-bank algorithm over the probability algorithm for the conventional 

MMAE. However, Figures 44 and 96, along with their associated eRMS values, imply the superior 

performance of the probability algorithm over the fixed-bank algorithm for the M3AE. This sup- 

ports the statement that tuning the MMAE for better parameter estimation, as with the probability 

algorithm often degrades the MMAE state estimation and also provides an impetus for utilizing the 

M3AE architecture. 

Case 2: The minimum and maximum filter-assumed parameter values are indicated by the 

trace pair (- - -) in Figure 97 and illustrate the capability of mis algorithm to bound the true parameter 

extremely well for t = 3750 sec to 3820 sec. Consequently, the parameter is tracked extremely 

well, but this performance is not consistent, as shown by the erratic parameter estimate for t = 3820 

sec through 3850 sec. In particular, the parameter estimate goes from severe underestimation to 

overshooting the true parameter value for t = 3820 sec through 3830 sec. The parameter estimate 

starts to improve well from about t =3833 sec to t = 3840 sec along with a contraction, but then 

again suffers severe overestimation along with too large a bank size from t = 3842 sec through 3850 

sec. The problem can be attributed to bom the moving-bank method (parameter position estimate 

monitoring) and the discretization method (PBDM). The parameter position estimate monitoring 

causes continual movement away from the true parameter value and to the right (higher parameter 

values). This is illustrated in Figure 97 by the parameter estimate trace (—) being superimposed on 

the maximum filter-assumed parameter value trace (- - -) shortly after t = 3820 sec and t = 3840 

sec. Recall mat the bank is centered on aMMAE, so the center of the bank is continually moving to 

the right. Given a better method to estimate the true parameter position, these unwanted movements 

could be avoided. 
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To make things worse, the PBDM assigns parameter values associated with the movements 

above that gradually widens the breadth of the bank. Observe the series of bank movements from t 

= 3823 sec to 3827 sec and notice that the minimum filter-assumed parameter value moves slightly 

to the right for each move. In contrast, the maximum filter-assumed parameter value moves quickly 

to the right for each move, resulting in an increased bank breadth. This occurs again from t = 3842 

sec to 3850 sec. The reason this occurs, is that the peripheral view filter to the right of center, (filter 

5) is taking large steps towards a^x in an effort to cover the periphery, whereas the peripheral view 

filter to the left of center, (filter 1) is taking small steps away from a^ in an effort to maintain 

its position in the periphery. One solution would be to reduce the peripheral view of the bank by 

assigning a larger Chi-Squared probability value, PXl, for filter 1 and/or assigning a smaller Chi- 

Squared probability value, PXB, for filter 5 (see discussion in Section 3.2). The potential drawback 

to this idea is that a reduced peripheral view could increase the time required to converge on a large 

change in the true parameter value. On a positive note, for t = 3820 sec to 3850 sec, the parameter 

error mean shown in Figure 97 is seen to be relatively small (« -200) with a 1 sigma magnitude of 

w 400. These statistics imply that the severe overestimation and underestimation of the parameter 

value do not exist for every Monte Carlo run. In fact, observation of each run showed that only 

three of the ten runs suffered from this problem during this time frame, while the other seven runs 

generated very good parameter estimates. Nevertheless, it is important to identify this potential 

liability through the single run plot at the top of Figure 97. 

Case 3: The same conclusions drawn in cases 1 and 2 apply here, so the performance plots 

are not shown. 

Case 4: The PBDM selects filter-assumed parameter values which give the MMAE the ability 

to react to abrupt changes in the true parameter, as seen in the plot of the parameter estimate in Figure 

98 from t = 3800 sec to 3810 sec.   Similar performance is seen at t = 3850 sec. The erratic bank 
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movement discussed above is still evident for t = 3820 sec through 3842 sec. Again, performance 

suffers when the bank size is too large, allowing severe overestimation of the parameter estimate 

(t = 3820 sec to 3833 sec), even though the parameter estimate is not at the edge of the parameter 

space spanned by the filter bank, i.e., aMMAE + ai and äMMAE ^ aj. The error state estimates are 

shown in Figures 99 and 100 for completeness. 

Case 5: The parameter estimate plot in Figure 101 further supports the claim that the PBDM 

provides good bounding of the parameter estimate as seen by the trace pair (- - -). 

4.10 MMAE Incorporating the Density Algorithm with Probability 
Discretization 

4.10.1  Implementation Issues 

The final moving-bank MMAE algorithm combines the basic density algorithm with the PBDM, 

as discussed in Section 3.3. The design parameters used here are the same as those used for the basic 

density algorithm summarized in Table 6 (page 178), with one exception. The decision delay time is 

increased to 3 sample periods to prevent erratic changes in the filter-assumed parameter values and 

associated degradation of the parameter estimates. The PBDM with the probability values shown 

in Table 7 (page 239), maintains a broad view of the parameter space. This broad view results in a 

larger parameter breadth than that obtained with the stand-alone density algorithm. As a result, im- 

mediately following a moving-bank decision, the algorithm is susceptible to making an erroneous 

decision such as move hard left or hard right. This may occur if one of the outlying filters (the pe- 

ripheral view filters) temporarily indicates a need to move. To counter this, the decision delay time 

is increased to 3 sample periods, allowing the bank to settle out transients and make better decisions. 

Expansion decisions are suppressed (T3 = 5), since the PBDM keeps two filters positioned 

with a peripheral view of the parameter space, thereby precluding the need for expansions. Note mat 

the choices to suppress expansions and increase the decision delay are dependent on die probability 
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values used by the PBDM shown in Table 7 (page 239). Other probability values, resulting in a 

smaller parameter breadth for the bank, might affect these choices. The same 40-by-5 look-up table 

of parameter values presented in Section 4.9 was used on-line. 

4.10.2  Performance 

Case 1: This algorithm provides the best overall performance for this test case as compared 

to the other algorithms being analyzed. The parameter plot in Figure 102 shows both quick conver- 

gence to the true parameter value and consistency of the estimate in the presence of a non-changing 

truth value. The one exception occurs at t = 3820 sec, which results from the unusually large (or 

small) noise values that have affected all the algorithms. The probability plot is shown in Figure 

103 for completeness, along with the MMAE and M3AE error state estimates in Figures 104 and 

105. Notice the absence of transient behavior at r = 3850 sec in Figure 104 as compared to Figure 

95. This improvement is attributed to the quick response time of the density algorithm decision- 

making process. The evidence of this algorithm's superior performance is found in Tables 16-22 

(Appendix E) of the measures ex
RMS and e^g. 

Case 2: Although some of the erratic bank movement is removed as seen by comparing Fig- 

ure 106 (moves based on the density algorithm) to Figure 97 (moves based on parameter position 

estimate monitoring), there is still room for improvement. Specifically, a series of soft moves to the 

right increase the breadth of the bank unnecessarily. 

Case 3: No additional insights are gained from this case study. The same conclusions drawn 

in cases 1 and 2 apply here, and performance plots do not warrant being shown. 

Cases 4 and 5: The trends here match those for case 4 under the MMAE incorporating the 

probability algorithm. The erratic bank movements previously caused by the parameter position 

estimate monitoring are still present, but are now the result of the density algorithm decision-making 
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process. Again, the performance plots do not provide any additional insights and are not shown for 

brevity. 

4.11 Baseline Without Interference/Jamming 

The unjammed test case (case 6) is presented as a baseline for comparison to the other inter- 

ference/jamming scenarios and reveals a negative effect of lower bounding the probabilities. This 

case is presented in a separate section since all the algorithms produce identical results for this case. 

Figures 107 and 108 show the consistent bias in the parameter estimate resulting from blending all 

five filter-assumed parameter values when in fact, filter 1 is a perfect match to truth. Although the 

MMAE state estimate errors shown in Figure 109 indicate adequate tuning and selection of the filter 

model that best matches truth, the M3AE state estimate errors in Figure 110 show that the single fil- 

ter in the M3AE architecture is too conservatively tuned. One alternative that would overcome the 

bias on the parameter estimate due to the probability lower bounding is to exclude the filters with a 

"low" probability from the blending process. In other words, the lower bounding is employed in the 

hypothesis conditional probability calculation to prevent filter "lock-out" as described in Section 

2.2.2, but filters either at the lower bound or below some empirical threshold would be excluded 

from the estimate blending process described by Equations (50) and (51). Note that the probability 

weight associated with the filters that are excluded from the blending process is distributed propor- 

tionally among the remaining filters such that the sum of the probability of the remaining filters 

is equal to one. Previous research by [18,50,67] invoked this idea for a control problem to pre- 

vent filter lock-out while lowering the chance of applying inappropriate control input caused by the 

blending process. 

In order to demonstrate the potential benefits gained by excluding the filters with a " low" prob- 

ability from the blending process, the fixed-bank algorithm was implemented using this process. 
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The algorithm choice is not important since all the algorithms perform the same under nominal 

conditions (no interference/jamming). The empirical threshold used to distinguish between proba- 

bilities mat are considered too low to be included in the blending process was arbitrarily selected at 

2-pmin = 0.002. The state estimation errors are shown in Figure 111 for the MMAE and Figure 112 

for the M3AE. Note that Figure 111 is nearly identical to Figure 109, indicating the minor impact 

of the probability lower bounding on the MMAE state estimates. In contrast, Figure 110 shows the 

overly conservative tuning present in the M3 AE estimates due to the lower bounding being applied 

to the parameter estimate being sent from the MMAE to the single Kaiman filter, whereas the mod- 

ified blending process (see Figure 112) does not suffer from this conservatism since the filters re- 

siding at the lower bound did not influence the blended parameter estimate. Therefore, it is highly 

recommended to apply the modified blending process. Furthermore, a recommendation is made 

in Chapter 5 to apply the modified blending approach for the other case studies in which interfer- 

ence/jamming exists and when the breadth of the MMAE bank is particularly large. For instance, 

algorithms implementing the PBDM designed to keep filters in the periphery of the parameter space 

could benefit from the modified blending process, since these peripheral filters would not skew the 

parameter estimate high or low, but they would still be on-line waiting for an abrupt change in the 

true parameter 

Finally, comparison of Figure 111 (MMAE state estimates) to Figure 112 (M3AE state esti- 

mates) reiterates the observations made on page 198, that the M3AE will significantly outperform 

the MMAE only when there is significant blending of more than one elemental filter A quick look 

at the probability plot associated with the modified blending (Figure 113) shows that significant 

blending is not present and explains the similarity in the MMAE and M3AE state estimates. 
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4.12 Single Kaiman Filter 

A single Kaiman filter with RGPS = Ro (i.e., no interference/jamming assumed) was im- 

plemented for comparison purposes. The inability of this single filter to adapt to true parameter 

changes makes it victim to poor state estimation in the presence of interference/jamming. Although 

a seemingly unfair comparison, the degraded state estimation performance in the presence of inter- 

ference/jamming motivates the need for the adaptive algorithms being presented here. Error state 

estimation plots for cases 1 and 5 are shown in Figures 114 and 115 as representations of the de- 

graded performance encountered with the use of a single Kaiman filter without the benefit of being 

provided accurate parameter estimates. Note the dramatically different scales on these plots, com- 

pared to all previous state estimation error plots. The measure, ex
RMS, is printed on each plot and 

further indicates the poor performance. 

4.13  Chapter Summary 

This chapter presented the models used for the example problem simulated in software. The 

various design parameters for the algorithms were identified, along with numerous implementation 

issues relative to each algorithm. Simulated data based on the aircraft precision landing application 

was plotted and tabulated, to demonstrate the enhanced performance achievable through the new 

moving-bank MMAE methodologies. Although some comparison of the algorithms was accom- 

plished in this chapter, final conclusions are made in Chapter 5 along with recommendations for 

future research. 
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Chapter 5 - Conclusions and Recommendations 

5.1  Conclusions 

Prior to this research, limited methods were available to determine moving-bank decisions 

or parameter discretization adequately within the structure of multiple model adaptive estimation 

(MMAE). Most of these methods rely on logic which utilize ad hoc thresholds determined through 

empirical analysis. The goal of mis research is to replace these existing ad hoc techniques with 

analytically-based algorithms, and the contributions made by this research provide designers with 

new flexibility when selecting bank moving or sizing methods for a moving-bank MMAE. In par- 

ticular, this research has led to the development of new algorithms and modifications to existing 

algorithms associated with moving-bank MMAE. These new algorithms exploit information not 

previously utilized in a moving-bank MMAE and provide an analytical basis for some of the thresh- 

olds used in the decision-making logic. Additionally, a new parameter discretization method was 

developed to be used in conjunction with a moving-bank MMAE algorithm. 

Chapter 4 demonstrated one application of these algorithms to an aircraft GPS-aided INS nav- 

igation system subjected to interference/jamming while attempting a successful precision landing 

of the aircraft. In some respects, this example problem is not as interesting as some others, in that 

state estimation performance did not always vary significantly from one algorithm to another This 

is primarily due to the relatively benign flight environment mat exists for the landing approach por- 

tion of the flight profile being simulated and the choice of the unknown parameter Specifically, 

the GPS measurement noise variance is chosen as the unknown parameter, and once a significant 

level of interference is induced (i.e., RGPS > 500), the GPS signal is effectively lost along with the 

feedforward corrections provided from the GPS to the INS. For example, assuming -RGPS = 750 

when in reality, RGPS = 500, the associated Kaiman filter is too conservatively tuned, but the state 
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estimation performance does not suffer appreciably. Therefore, poor parameter estimation does not 

always result in poor state estimation, even with the recently developed M3AE architecture which 

focuses on enhancing state estimation through enhanced parameter estimation. The state estimate 

performance measure, ex
RMS (the temporally averaged RMS value of the state estimation error), 

listed in Tables 17 - 22 of Appendix E, further illustrates this point through both a lack of varia- 

tion in the measure values and an inconsistency between superior parameter estimation and superior 

state estimation. Despite the lack of variation in the state estimation performance, the parameter es- 

timation performance is much more distinct between the algorithms, as illustrated by the measure 

CRMS (tne temporally averaged RMS value of the parameter estimation error) in Table 16. There- 

fore, final conclusions are focused on the parameter estimation measure. 

Recall case 2, in which the true GPS noise interference level of RGPS = 9000/i2 (versus the 

nominal noise level of RGPS = 9/i2) was induced for 100 sec of the 200 sec flight profile. For 

this case, the fixed-bank MMAE outperforms all of the moving-bank algorithms. However, for all 

other cases, it is outperformed by at least one of the moving-bank algorithms, and in most cases it 

generates one of the worst performance measure values. Recall that case 2 presented the scenario 

in which one of the fixed-bank filters was closely matched to truth. The fixed-bank performance 

quickly degrades when this is not the case, and given a relatively broad parameter space combined 

with a relatively few number of filters, it is unrealistic to assume that one of the fixed-bank filters 

would always lie close to truth. Therefore, the moving-bank algorithms are proven worthy of the 

additional computations needed for their implementation. The remainder of this discussion will 

focus on the moving-bank algorithms. 

The basic density algorithm developed in Section 3.1 and the density algorithm with expan- 

sions and additional delay (see Section 4.7.3) consistently provide good parameter estimates that 

compete very well with all the other algorithms in every case study. In particular, notice that the 
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density algorithm with expansions and additional delay has the best value of e\MS for case 5 (the 

true noise interference/jamming level begins at RQPS = 18000/i2 and undergoes three successive 

decreases to RGps = 9000/t2,4500/t2, and 9 ft2) and one of the best values of ea
RMS for all other 

cases. In contrast, the other moving-bank algorithms suffer large estimation errors in at least one 

case study while performing very well in one or two other cases. When considering whether or not 

to include expansions within the density algorithm's decision-making process, the main issue is the 

possibility of erratic bank movement that coincides with allowing expansions. This erratic move- 

ment is identified in the performance evaluation discussed in Chapter 4, as causing relatively small 

errors in the parameter estimates. Methods to reduce this erratic bank movement are discussed in 

Section 4.8.3. As mentioned above, given that a significant level of interference/jamming is in- 

duced, this problem's lack of sensitivity to small errors in the parameter estimate prevented serious 

degradation of the MMAE and M3AE state estimates. A different application may be more sen- 

sitive to these small parameter estimate errors, requiring the expansion decision to be modified to 

eliminate any and all erratic behavior, or to be removed from the algorithm altogether 

The main contribution associated with the density algorithm is the exploitation of new infor- 

mation (the conditional density, /z. \&,z._x, of the current measurements, z», provided to the MMAE, 

conditioned on the assumed value of the parameter vector, a, and the observed values of the pre- 

vious measurement history, Zi_i) not previously utilized in moving-bank multiple model adaptive 

estimation. The methods used to exploit this information include the measures M\ - Mg of Section 

3.1.3 and the decision-making logic presented in Section 3.1.4. Future researchers may need to con- 

sider other methods (such as those discussed in Section 5.2) in order to build on these first efforts. 

A modification to the existing algorithm developed by Sheldon [68,69] was presented as a 

joint effort with Miller [53]. Sheldon's algorithm is modified to provide on-line discretization of 

an adaptive MMAE bank rather than a single off-line discretization for a non-moving-bank MMAE 
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algorithm. Also, a previous assumption requiring steady state, constant-gain filters is replaced with 

a less restrictive finite horizon assumption for an iterative equation used to generate approximate or 

"pseudo "-constant gain values. 

The modified Sheldon algorithm is used in conjunction with the density algorithm of Section 

3.1, and the performance varies significantly from case to case, as indicated by ea
RMS. Expansions 

are much more necessary when using the on-line Sheldon discretization process, but their use is still 

problem-dependent. In general, the on-line Sheldon approach suffered from two implementation 

decisions. First, unlike all the other moving-bank algorithms, the MMAE bank is not centered on 

äMMAE since the Sheldon algorithm does not, in general, select a filter-assumed parameter value 

equal to aMMAE- Second, the Sheldon algorithm does not, in general, select a filter-assumed para- 

meter value equal to a^, resulting in large estimation errors when the true parameter value, at, is 

close to amax. Section 4.8.3 identifies one method to rectify this problem of large estimation errors, 

and Section 5.2 will discuss these modifications more fully. However, these modifications will re- 

quire giving "good engineering judgment" precedence over the cost minimization approach which 

is the basis of Sheldon's algorithm. Overall, the current implementations using the on-line Shel- 

don discretization did not perform as well as the other algorithms for this example problem The 

contributions include extension of Sheldon's off-line algorithm for on-line use and application of 

Sheldon's algorithm to systems with nonlinear models or linear/linearized system models that are 

astable or unstable. 

The probability algorithm of Section 3.2 provided a stand-alone algorithm which combined 

parameter estimate position monitoring with the newly-developed probability based discretization 

method (PBDM), also discussed in Section 3.2. The fundamental concept employed by the PBDM 

is to choose the parameter values for each of the j = 1... J elemental Kaiman filters in an MMAE, 

based on the calculation of the probability PX(XJ < T). This probability calculation is the prob- 
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ability that die generalized Chi-Squared variable, Xj, will lie below a threshold, T, where Xj is 

defined by the following quadratic form of the measurement residuals, r,-, (assuming that the real 

world parameter value is at) and the associated filter-computed covariance matrix, Aj, based on 

the assumption within theyth elemental filter that the parameter value is a.,: 

Xj = rjAj1!-,- 

The probability algorithm is somewhat competitive with the other algorithms in terms of e*RMS, 

as is the combination of the density algorithm with the PBDM. The real contribution comes from 

the development of the PBDM, which is much less ad hoc than other discretization methods such 

as uniform or logarithmic parameter spacing. Additionally, the PBDM provides an attractive alter- 

native to the Sheldon discretization method. 

Additional contributions include: 

1. Derivation of the first two moments of the generalized Chi-Squared density function, fx(c), in 

the presence of system mismodeling (see Appendix A). This contributionprovides the first steps 

in the derivation of a general equation for this density function. Given this density function, 

one could replace many of the ad hoc techniques used for threshold selection in the density 

algorithm (see Section 3.1.3). 

2. Development of a new numerical integration method denoted the Modified Simpson's Rules 

(see Appendix B). The modified Simpson's rules are a more general form of the basic Simpson's 

rules, allowing the spacing between the discrete samples used in the integration to be non- 

uniform. 

3. Extending Hanlon's [22] derivations of equations for the mean of the residual in the presence 

of mismodeled measurement or dynamics noise covariances (see Appendix C). Clearly, 

mismodeled measurement or dynamics noise covariances can be motivated by many real-world 
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applications (including the GPS interference/jamming application used in this research), and the 

Kaiman filter residuals provide useful information for adaptive parameter and state estimation. 

Therefore, characterizing the first two moments of the residuals is extremely worthwhile, as 

shown in the development of the PBDM of Section 3.2. 

5.2 Recommendations 

The discussions in Chapter 3 and Chapter 4 identified several recommendations for future 

research. Each recommendation will be briefly stated along with the page number where it was 

first proposed in order to assist the reader with the context of the recommendation. 

The density algorithm utilized the likelihood quotient rjAj1^- and the density data /z|a,z0') 

for each filter to generate the measures M5 - M9 given by Equations (86) - (97). An alternative 

use of the binary information obtained in forming these measures was first introduced on page 74 

relating to measure M7 and is repeated here. Notice that £(j) in Equation (91) for measure M7 

associates a binary value with each elemental filter, and the concatenation of these binary values 

could be viewed as a binary word. Consider the three cases [1 0 0 0 1], [1 1 0 0 0], and [0 0 0 1 1] 

which all result in M7 = 2, but depict significantly different scenarios requiring different moving- 

bank decisions. In this context, the value of M7 is less important than the location of the l's and 

0's or the decimal value associated with each binary word. For example, large binary words such as 

[1 1 0 0 0]2 = 2410 would indicate a need to move right, away from the "bad" filters, versus small 

binary words such as [0 0 0 11]2 = 3io used to indicate a need to move left. This binary information 

could lead to decisions regarding the harshness of a bank move, as was done with measure M7. 

Furthermore, the binary information could give insights into which direction to move the bank and/or 

when to expand and contract the bank. This same type of binary word construct could be used to 

enhance the information content of any measures expressed as sums, i.e., M5 through M9. 
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Derivation of the first two moments of the generalized Chi-Squared density function, fx(c), 

in the presence of system mismodeling was presented in Appendix A. However, the discussion on 

page 77 identified the benefit of deriving a general equation for the density function and applying 

a likelihood ratio test based on false and missed alarm rates specified by the designer Attempts 

were made by this author to define the density function fully, including the use of relationships 

between characteristic functions and their associated density functions. However, this did not lead 

to a characteristic function that is directly related to any known density function(s). Therefore, 

continued research is needed in the development of the generalized Chi-Squared density function, 

/x(c). 

The tendency of the MMAE to favor more conservatively tuned filters resulted in a biasing 

high of the parameter estimates, aMMAE- A recommendation was made on page 105 to account 

for this bias when appropriate. One approach would be to focus on the quadratic rjAj1^ which 

affects the density function in Equation (47) and ultimately affects the probability calculation given 

by Equation (44). The information contained in mis quadratic may lead to an analytical relationship 

which characterizes the bias, so mat it can be compensated.. Alternatively, a simple ad hoc technique 

would be to conduct a performance analysis on the problem at hand and empirically determine the 

magnitude and direction of the bias term. This would probably lead to several different bias terms 

based on the current "mode of operation", since the bias is likely to change significantly as the 

operational mode of the system changes. 

The PBDM requires calculation of the Chi-Squared probability, PXj, for each filter in the 

MMAE bank The discussion on page 124 identified that Px. should be selected greater than PX3 

for the case in which filter 3 is assumed to match truth and j > 3. This was demonstrated for the 

case in which the parameter value being estimated is the measurement noise covariance R The rec- 
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ommendation is to validate that mismodeling in any of the other system matrices (Qdj, <&,, H,, and 

Bdj) will residt in this same attribute. 

The parameter value search routine provided a means of simplifying the process of finding pa- 

rameter values for the filters to meet the desired probability goals as described in Section 3.2.3.1. 

The recommendations on page 132 are (1) extend the search routine for the case in which the pa- 

rameter vector is not a scalar and (2) incorporate both the magnitude of the transformed residual 

mean vector, Mß>, and the direction of the mean vector into the search routine. 

Two recommendations associated with the Sheldon algorithm were proposed. First is to take 

the parameter values chosen by the Sheldon algorithm and set the one closest to äMMAE equal 

to aMMAE (see page 218). Alternatively, one could constrain the optimization such that one of 

the parameter values is fixed at aMMAE- The motivation for these alternatives is to utilize the 

information provided through aMMAE, namely the current best estimate of the true parameter value, 

to define one of the elemental filters in the bank in order to enhance the algorithm's performance. 

The second recommendation is presented on page 222 as constraining the Sheldon algorithm 

by fixing the minimum and maximum filter-assumed parameter values in the optimization process. 

This would not only help the integration of the Sheldon algorithm with the density algorithm which 

provides the two endpoint parameter values, but would also prevent the severe underestimation of 

the parameter that existed in case 1 in which the true GPS noise interference level of RGPS = 

18000/£2 (versus the nominal noise level of RGPS = 9/*2) was induced for 100 sec of the 200 sec 

flight profile. Recall that the Sheldon algorithm will not choose a parameter value for a filter equal 

to the maximum admissible parameter value, resulting in an upper bound of the parameter estimate 

that may be significantly less than the true parameter value. Therefore, it makes good engineering 

sense to fix the minimum and maximum filter-assumed parameter values. Alternatively, artificially 

increasing a,,^ prior to implementing Sheldon's algorithm such that aj as computed by that algo- 
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rithm satisfies aj = a,,^, would also prevent this severe parameter underestimation. However, this 

requires anticipating which artificial value of a^ (in fact, establishing it iteratively) would gener- 

ate the desired result and does not present any clear benefits over the method above of simply fixing 

aj at amax in a constrained optimization. 

The test cases simulated in Chapter 4 provide strong motivation for implementing these rec- 

ommended changes to the Sheldon discretization in the context of a moving-bank MMAE. This is 

especially true for moving-bank algorithms that lead to contracted bank sizes which are precluded 

from moving to all possible locations in the admissible parameter space. The results show the un- 

necessary and potentially severe cost in terms of degraded parameter estimation, if the changes are 

not incorporated. The obvious objection to applying either of these two recommendations for the 

Sheldon algorithm is that good engineering sense does not guarantee optimality. Furthermore, the 

Sheldon algorithm is based on the concept of optimally choosing die parameter values for the fil- 

ters, so applying ad hoc engineering may counter this optimality. Simulations followed by analysis 

will be necessary to determine any benefits resulting from these two recommendations. 

The last recommendation is to apply modified blending of the parameter and state estimates 

when the breadth of the MMAE bank is particularly large. Modified blending is first discussed on 

page 264 as excluding the filters with a "low" probability from the blending process. The motiva- 

tion is to prevent filters at or close to the probability lower bound from skewing the estimates high or 

low, which is more likely to occur when the breadth of the bank is large. This concept was shown to 

provide superior results under nominal flight conditions (no interference/jamming), but will likely 

provide similar benefits in the presence of interference/jamming and for other applications in gen- 

eral. This needs to be validated through simulations. 

279 



APPENDIX A - Derivation of Density Moments 

This appendix presents the derivations of the first two moments of the generalized Chi-Squared 

density function, fx(c), in the presence of system mismodeling (see Sections 3.1.3 and 3.2). The 

quadratic of interest is given by 

v.^rTA^r. 
*-3 3      3      3 

under the conditions that the parameter at in the truth model is different from the parameter a, used 

as the basis of they't/l elemental filter within the MMAE. Explicitly, the residual Tjfe) in thatjth 

filter is given by [zfc) - H(*i)x(t,~)], and the measurement z(U) is produced by the real world 

sensor, represented by the truth model based on the parameter value at. The mean of the random 

variable Xj is given by 

E{Xj)   =   ^{rjA7^} = ^{*r[rjA7^]} = ^{tr[(rJ)(A7^)]} 

=   E {tr [(A-,,) (PT)] } = E {tr [AJVJ] }^[E {AJ Vj}] 

=   tr[AT^{rjrJ}] (167) 

Recall that the residuals, TJ, are normally distributed with mean, fij, and that Hanlon [22] showed 

that the actual covariance matrix for the residuals is the true covariance matrix, At, given by 

At    =    E {(rj - ftj) (rj - fijf} = E {rjrj} - fij»? 

=*   E{Tjr]}=At + njVL] (168) 

Substituting Equation (168) into (167) gives the final expression for the mean as: 

he, = E {*) =tr |V (A* + rf)] <169> 
The variance is found as 

.2 
"x* 

E { (*i " ^x,)2} = E { (rjAj'rj - ^)2} 

E {tr (rjAjhjrjAjhj - rjAj1^ - ^rJAjhj + ^.) } 

E {tr (rjAjhjrjAjhj - 2Aj1Tjrjh(i + ^) } 
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=   E {rJAj^rJAj^} - 2ßxtr (A?E {r,rj}) + ^ 

=   E {rjAfrrJAfr} - 2^ + /£ (170) 

where the last equality uses Equation (167). From Appendix E of Maybeck [43], the following 

relationship is obtained: 

E {rjAj VJAJ1!-,} = tr (AT
1
^) tr (AT

1
^) + 2tr (AT^A^A*) (171) 

Now by substituting Equations (171) and (169) into (170), the final expression for the variance is 

found as: 

°i   =   «r(A71A4)<r(A71A*)+JWr(A71A*A71A«)-^+/4, 

=   tr {AT1 At) tr {AT1 At) + 2tr (AT^A^A«) - ii\. (172) 

Notice that the expressions in Equations (169) and (172) are functions of fij, A^ and Au which are 

readily available from the MMAE structure and assumed system models. 
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APPENDIX B - Numerical Integration 

This appendix introduces the development of a new numerical integration method denoted the 

"Modified Simpson's Rules". The derivation is heavily based on the method used to derive the well- 

known 3- and 4-point Simpson's rules used for numerical integration in one dimension [63]. The 

modified Simpson's rules are a more general form of the basic Simpson's rules, allowing the spacing 

between the discrete samples used in the integration to be non-uniform. This new development was 

motivated by the need to integrate a finite set of samples of a function in which the samples are not 

evenly spaced along the abscissa. Other methods considered include the trapezoid rule, curve fitting 

the data followed by analytic integrals, and Runge-Kutta methods. The modified Simpson's rules 

provided the best trade-off between numerical accuracy and computer processing time. Additionally, 

Runge-Kutta methods require a functional form of the integrand which is not available for problems 

with a finite set of samples of the function. The 3-point modified Simpson's rule is derived first, 

followed by the 4-point modified Simpson's rule. 

Consider Figure 116 and begin by approximating the integral of the function f(x) by 

a>2 

I f(x)dx   =   hxwofo +       *     toi/i + h   \ Wl^ + h2W2f2 

x0 

hwofo +   * , ,2wi/i + ^2/2 
All + h,2 

hiwofo + wifi + h2w2f2 (173) 

where 
Xi = discrete locations of functional values, i = 0,1,2 
fi = function evaluated at discrete locations x^ i = 0,1,2 
Wi = weighting values to be determined, i = 0,1,2 
hj = interval spacing between discrete locations, .7 = 1,2 

Note that the form of the first equality in Equation (173) is motivated by the standard 3-point Simp- 

son's rule [63]. 
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xO xl x2 

Figure 116. Non-Uniform Spacing for Modified Simpson's Rules 

Now let 
XQ = 0 
xi = xo + hi = hi 
xi = xi + hi = hi + hi 

Next let f(x) take on 3 expressions for which an exact integral is known, such as f(x) = l,x, x2. 

This will lead to 3 equations for the 3 unknown weights wi. Start with f(x) = 1 which results in 

x2 

I ldx 

Xo 

xi —xo 

hi + h2-0 

1 

=   hiw0 + wi + h2Wi 

=   hiWQ + wi + h-iWi 

=   hiwo + wi + h2W2 

hi (ÄWfeHGcTsO-       (,74) 

Next let f(x) = x which results in 
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x2 

I 
Xo 

xdx   = h\WQXo + w\xi + h2w2x2 

Xt\        Xr\ 

(hi+h2)
2 

1 
2 

h\w\ + h2w2 (hi + h2) 

hiw\ + /i2 (/ii + h2) w2 

Ä1 

(hi + h2y 

h2 

+ h2 
w2 (175) 

Finally, let f(x) = x2 which results in 

%2 

I 
XQ 

x dx 

Xn 3sf\ 

(hi + h2f 

1 
3 

HIWQXQ + tuirrf + h2w2x\ 

h\w\ + /l2^2 (h\ + /i2)2 

/if Wi + h2 (hi + /i2)
2 w2 

{(hi+h2f)
W1+\hT+h;) 

w2 (176) 

Combining Equations (174), (175) and (176) as a 3-by-3 system of equations permits the weights 

w   = 
w0 

Wl 

w2 

to be found through a simple matrix inversion. Specifically, 

w0 

Wl 

w2 

ft, 1 hi 

h1-\-h2 ftl+/l2 h1+h2 

0 ft, hi 

(hi+fts)2 hi+h2 

0 ft? hi 

(fti+ft2)
a hi+h2 

-, -1 

(177) 
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which can be efficiently implemented in software by recognizing the often repeated term hi + h2. 

The 4-point modified Simpson's rule is derived in the same manner as above with the approx- 

imation of the integral off(x) given by 

x3 

/ 
x0 

f(x)dx   -   hiwofo + mh + ^2/2 + ^3^3/3 (178) 

Now let f(x) = 1, x, x2, x3, and this will lead to 4 equations for the 4 unknown weights wt. The 

final result is 

wo 

W\ 

= 

W2 

w3 

ha. -, -1 

hi+h2+h3      hi-\-h2-\-h3 /11+/12+Ä3 h\-\-h2+h3 

h3 

Jhi+hz+häy (hi+hz+ha) hi+h2+h3 

ft? (fti+ft2)2 fc3 

(hi+h2+h3y (hi+h2+h3)
3 hi+h2+h3 

fe? (ftx+ft2)
3 h3 

(hx+h2+h3y {hi+h2+h3)'
t hi+h2+h3 

1 
2 

1 
3 

1 
L  4 

(179) 

The 3- and 4-point rules are both required to account for data sets with even and odd numbers 

of samples. Notice that at least three samples must be available to implement the 3-point rule. The 

length of the data set is first checked, and the 3-point rule is applied repeatedly and exclusively if 

the data set has an odd number of samples. However, if there is an even number of samples being 

integrated, then the 3-point rule is applied repeatedly for all but the last three samples followed by 

a single implementation of the 4-point rule on the last four samples. Alternatively, the 4-point rule 

could be given precedence and applied repeatedly, followed by zero, one or two implementations 

of the 3-point rule on the last several samples as needed. Table 9 shows three examples to illustrate 

the combinations of 3- and 4-point Simpson's or Modified Simpson's rules. For example, with 10 

samples, either apply three 3-point rules followed by one 4-point rule or apply three 4-point rules 
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and no 3-point rules. The advantage of giving 3-point rules precedence over 4-point rules is fewer 

inversions of the 4-by-4 matrix in Equation (179) versus the 3-by-3 matrix in Equation (177). There 

is a greater chance of ill-conditioning with the 4-by-4 inversions versus the 3-by-3 inversions. 

Table 9. Example Combinations of Simpson's Rule 

# Samples 3-point / 4-point 4-point / 3-point 
10 3/1 3/0 
11 5/0 2/2 
12 4/1 3/1 
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APPENDIX C - Equations for the Mean of the Residual 

Hanlon [22] developed equations for the mean of the residual of a Kaiman filter given three 

mismodeling scenarios. Hanlon defined mismodeling as variations in the system models from the 

true system models through the following equations: 

ABj   =   Bt - Bj -+ Bj; = Bt - ABj 

AHj   =   Ut-Uj^Uj^Ht-Allj 

A*,- $7 = *t - A*. 

The error between each elemental Kaiman filter state estimate and true state is defined as 

£,(#) = *(*)-**(#) (180) 

Assume that until a certain point in time, the Kaiman filter model matched the true system model. 

This time is identified as tf and up until this time, all of the modeling errors are zero, €j(tf) = 0, 

and 

For each mismodeling case, a pair of equations is needed to calculate the mean of the residual. First, 

an iterative equation for the mean of the state estimate error is given by 

Eziu^ieM)}   =   < 

0 

[(I - KjHt) A*; - Kj&H&j] *,■(*+) 

+ [(I - Kj-Ht) AB; - KjAHjBj] u(tf) 

(I-KjHjQtEz^iejitU)} 

+ [(I - KjHt) A*j - KjAHj*j} Mtf-i) 

+ [(I - KjHt) ABj - KjAHjBj] ufe_i) 

for U < tf 

for ti = tf+i 
(181) 

for ti > tf+i 

where .Ez(ti-i) {•} — E i' I z(^-i) = zi-i}> ie> *e conditional expectation, conditioned on the 

previous measurement history. Second, a running calculation of the mean state estimate error is 
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used to compute the residual mean, ^ = %.,) {TJ(U)}, via the following equation: 

Ezfr-AMU)}   =   nt^tEz^ieM-i)} 

+ (HtA*,- + AH,-** - AH,A*,-) x./fe) 

+ (HtABj + AHjBt - AHjABj) uft-i) (182) 

Equations (181) and (182) can be simplified for each of the following cases in which only one type 

of mismodeling is assumed. These cases could be extended for combinations of mismodeling such 

as ABj ^ 0 and AH., / 0. 

C.l Mismodeled Input Matrix 

Given that 

ABj + 0 

Equation (181) reduces to 

Ez(U-1){eM)} = < 
(I-KiHt)ABju(t/) 

(I-K.HO^z^ol^ti)} 

+ (I-KiHt)ABiu(*i-i) 

for t{ < tf 

for ti = tf+1 

for ti > tf+1 

and Equation (182) reduces to 
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C.2 Mismodeled Output Matrix 

Given that 

Equation (181) reduces to 

Ez(t^){zM)}=< 

AH, ± 0 

0 

-KJAHi*ixj(i+) - KjAHjBjuitf) 

(I-KjHjutEz^iejittJ} 

-KiAHi*ixi(t+i) - Kj&HjBjuiU-i) 

for ti < tf 

for ti = tf+i 

for ti > tf+i 
and Equation (182) reduces to 

Eziu-J Mb)} = H^t^z^-O (ei(^+-i)} + AHi*txi(i+0 + AH.B^-i) 

C.3 Mismodeled State Transition Matrix 

Given that 

Equation (181) reduces to 

^z(*<_1){ei(*.t)} = < 

0 

(I-K^A^x,^) 

(I-K.H^^z^ol^ti)} 

+ (I-KiHt)A*J-ii(ttti) 

for U < tf 

for U = £f+i 

for ij > tf+i 
and Equation (182) reduces to 

Ez(u-,) iri(ti)} = Ht**^^.,) {^ti)} + HtA^x^ttx) 

C.4 Mismodeling Measurement or Dynamics Noise Covariances 

Hanlon did not explicitly derive expressions for the mean of the state estimate error or the 

mean of the residual in the presence of mismodeled measurement or dynamics noise covariances. 

However, his work is easily extended for these cases by letting: 

AR, Rt - Rj -> Ttj = R* - ARj 
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AQdj   =   Qat - Qdj -♦ Qdj; = Qdt - AQdj 

Begin by expressing the residual vector in tenns of the mismodeled system matrices: 

rj(U)   ±   z(U) - njijitr) = \H#t(U) + vt(ii)] - Hj±j(t7) 

= Ht [*txt(*i-i) + Btu(<i_i) + Gt-watiU-i)] + vt(U) ~ H, [*,x,(tti) + Bj-ufe-i)] 

= Ht*txt(i;_i) - H,*,-x,(*+j) + [HtBt - H,-B,-] u(ti_i) + HtGtwdt(i;_i) + vt(«i) 

=   Ht*txt(*i_i) - (Ht - AH,) (*t - A*,) x,(£i) 

+ [HtBt - (Ht - AH,) (B* - AB,)] u(fc_i) + H^w^fe-i) + vt(i<) 

=   Ht*tei(«ti) + (H*A*,- + AH,-** - AH,A*,) x,(t+i) 

+ (HtAB,- + AHjBt - AH,AB,) ufe-i) + HtGtwdt(ti-i) + vt(t*) (183) 

where wdt(tj) is the discrete-time zero-mean white Gaussian dynamics driving noise vector for the 

truth model and vt (U) is the discrete-time zero-mean white Gaussian measurement noise vector for 

the truth model. Notice the absence of AR, and AQd, explicitly in Equation (183), realizing that 

they will affect the explicitly shown terms, e,(i+) and x,(i+). Next take the expectation of this 

residual expression to find the mean of the residual: 

^zft-O fo(**)}   =   ^zft-O {Ht#tei(£i) + (HtA*,- + AH,-*« - AH,A*,) £,-(*+x) 

+ (HtAB,- + AH,Bt - AH, AB,) ufe-i) + HtGtwdt(^_i) + vt(U)} 

=   Ht*.^^) {ei(*ti)} 

+ (HtA*,- + AH,*t - AH,A*,) x,(t+i) 

+ (HtABj- + AH,Bt - AH,AB,) VL(U-I) 

where the last simplification results from #z(t<_i) {wdt(*;)} = 0 and #z(ti_i) {v*(*»)} = ° (i-e-> 

zero means). This result is exactly Equation (182), indicating that this expression still holds in the 

presence of mismodeled measurement or dynamics noise covariances. Similarly, Equation (181) 

is duplicated by taking the conditional expectation of Equation (180) and stepping back one data 
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sample in time: 

+ [(I - Kjlit) A*, - KjAH,-*,-] x,(i+i) 

+ [(I - KjHt) AB,- - KjAHjBj] u(tt-i) 

+ (I - Kj-Ht) Gtßz^.o {wdt(ti_i)} 

+ [(I - K,-Ht) A*,- - Kj&HjGj] ^-(tt i) 

+ [(I - KjUt) AB, - KjAHjBj] u(k_i) 

Furthermore, AB, = 0, AHj = 0 and A$, = 0, resulting in the simplified expressions shown 

here. 

Eziu-jteitt)}   =    < 

0 ,   for U < tf 
0 ,   for U = tf+i 

(l-KjHjGtEziu-jietö-i)}     >   fotU>tf+1 

Which simplifies even further to 

Ez(ti-1){eM)} = 0,Vti 

Similarly, 

Exiu.,) {Ti(U)} = H&tEz^ {ejitU)} = 0, V U 

This shows that the mean of the residual will be zero if the measurement or dynamics noise covari- 

ances alone are being mismodeled. 
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APPENDIX D - Model State Definitions and System Matrices 

This appendix contains a tabular listing of the 13-state GPS/INS reduced-order model. The 

LN-93 error-state dynamics matrix F and the process noise matrix Q as provided by Litton are 93- 

by-93 arrays containing a large number of elements that are identically zero [25]. The non-zero 

elements of the Litton model that apply to the reduced-order 13-state model are included in Tables 

10 through 15. 

Table 10. Reduced-Order System Model States 

State 
Number 

State 
Symbol 

Definition LN-93 
State 

PLS 
State 

1 S9X X-component of vector angle from true to computer frame 1 1 

2 69y Y-component of vector angle from true to computer frame 2 2 

3 66z Z-component of vector angle from true to computer frame 3 3 

4 <t>* X-component of vector angle from true to platform frame 4 4 

5 &/ Y-component of vector angle from true to platform frame 5 5 

6 & Z-component of vector angle from true to platform frame 6 6 

7 svx X-component of error in computed velocity 7 7 

8 6Vy Y-component of error in computed velocity 8 8 

9 svz Z-component of error in computed velocity 9 9 

10 Sh Error in vehicle altitude above reference ellipsoid 10 10 

11 8hB Total baro-altimeter correlated error 23 11 

12 ÖPRudk GPS User clock bias - 12 

13 SDudk GPS User clock drift - 13 

292 



Table 11. Elements of the Dynamics Submatrix F(red)n 

Element Term Element Term 

(1,3) -Pv (1,8) -CRY 

(2,3) Px (2,7) CRX 

(3,1) Pv (3,2) -Px 
(4,2) -a (4,3) ily 

(4,5) win* (4,6) —Uiriv 

(4,8) —CRY (5,1) nz 

(5,3) * "X (5,4) -Win, 

(5,6) Uinx (5,7) CRX 

(6,1) —ily (6,2) »"X 

(6,4) Winv 
(6,5) —u>inx 

(7,1) -2vvnv - 2vznz (7,2) JiVyllx 

(7,3) 2vzny (7,5) -Az 

(7,6) Ay (7,7) -VZCRX 

(7,8) 2nz (7,9) ~Pv - 2fiy 

(8,1) A Vx\ ly (8,2) -2VXQX - 2Vznz 

(8,3) 2vztty (8,4) Az 

(8,6) —Ax (8,7) -2QZ 

(8,8) —VZCRY (8,9) Px + 2fk 

(9,1) 2VXQZ (9,2) 2vynz 

(9,3)  ZVy&ly            ZVX*'x (9,4) —Ay 

(9,5) Ax (9,7) Pv + 2Qy + VXCRX 

(9,8) ~PX   ~  2QX   +  VyCRY (9,10) 2g0/a 

(10,9) 1 

"x,y 

'x,y,z a 

Vx,y,z 
Ax,y,z 
CRX,RY 

90 
a 

Components of angular rate, nav reference frame to earth-fixed frame 
Components of angular rate, earth-fixed frame to inertial frame 
Components of angular rate, nav reference frame to inertial frame 
Components of vehicle velocity vector in earth-fixed coordinates 
Components of specific force in the sensor reference frame 
Components of earth spheroid inverse radii of curvature 
Equatorial gravity magnitude (32.08744 /*/ sec2) 
Equatorial radius of the earth (6378388 m) 
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Table 12. Elements of the Dynamics Submatrix F(red)12 

Element   Term || Element   Term 

(9,11)       k2   || (10,11)      fci 

Table 13. Elements of the Dynamics Submatrix F(red)22 

Element    Term 

(11,11)     -ßSK || 

Table 14. Elements of Process Noise Submatrix Q(red)n 

Element Term Element Term 

(4,4) QvbT 
(7,7) QVA^ 

(5,5) QvH 
(8,8) QnAv 

(6,6) Q^ (9,9) Q'OA, 

Table 15. Elements of Process Noise Submatrix Q(red)22 

Element       Term 

(11,11)     2ßthr&*Sh. || 

ki,2 

ßsh0 

QVA, 

'6ha 

■ \fertical channel gains, see LN-93 documentation [25] for equations 
: Barometer inverse correlation time (r = 10 min; ß = 7) 

A      2 

= PSD value of gyro drift rate white noise (6.25e-10-30 

= PSD value of accelerometer white noise (1.037e-7^r) 
: Variance of barometric altimeter correlated noise (10000/t2) 
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APPENDIXE - Tabulated Performance Measures 

The performance measures e\MS and ex
RMS are discussed in Chapter 4 and shown here in 

Tables 16 - 22. The definition of these performance measures is given in Section 4.4. Notice mat 

the minimum measure values (i.e., the ones associated with the best performance) for each case are 

highlighted in boldface, and Chapter 5 will draw final comparisons of the results tabulated here. 

Table 16. MMAE Blended Parameter Estimation Measure e\MS 

Case Fix Den Den/Exp Sheldon Sheldon/Exp Prob Den/Prob 

1 203 80 85 193 295 78 58 
2 71 146 115 150 100 192 182 
3 128 110 118 82 52 114 149 
4 227 189 198 262 282 217 215 
5 239 284 179 582 293 253 276 
6 34 34 34 34 34 34 34 

Fix - Fixed-Bank Algorithm 
Den - Density Algorithm 
Den/Exp - Density Algorithm with Expansion and Increased Delay 
Sheldon - Density Algorithm with Sheldon Discretization 
Sheldon/Exp    - Density Algorithm with Sheldon Discretization, Expansion and Increased Delay 
Prob - Probability Algorithm 
Den/Prob - Density Algorithm with Probability Discretization 
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Table 17. MMAE Blended State Estimation Measure eRMS - State 1 

Case Fix Den Den/Exp Sheldon Sheldon/Exp Prob Den/Prob 
1 3.463 3.045 3.248 3.047 3.284 4.008 2.858 
2 3.206 3.064 3.084 3.361 3.043 3.206 2.874 
3 3.274 2.526 2.794 2.835 2.685 3.13 2.544 
4 4.508 4.319 4.433 4.504 4.541 4.684 4.544 
5 3.546 3.312 3.415 2.571 3.291 3.777 2.803 
6 1.171 1.171 1.171 1.171 1.171 1.171 1.171 

Table 18. MMAE Blended State Estimation Measure eRMS - State 2 

Case Fix Den Den/Exp Prob Sheldon Sheldon/Exp Den/Prob 
1 3.932 3.23 3.483 4.541 3.433 3.632 3.029 
2 3.689 3.159 3.554 3.833 3.056 3.335 2.914 
3 3.911 3.523 3.369 3.734 3.349 3.389 3.376 
4 6.11 5.917 5.997 6.207 6.356 6.359 6.045 
5 3.988 3.048 3.824 4.154 2.732 3.42 3.512 
6 1.329 1.329 1.329 1.329 1.329 1.329 1.329 

Table 19. MMAE Blended State Estimation Measure iRMS - State 3 

Case Fix Den Den/Exp Sheldon Sheldon/Exp Prob Den/Prob 
1 4.145 4.044 4.132 4.046 4.197 4.261 4.336 
2 4.105 5.137 4.32 4.506 4.293 4.264 4.822 
3 4.102 5.143 4.251 4.761 4.269 4.192 4.639 
4 4.224 4.811 4.524 4.819 4.385 4.235 5.122 
5 5.345 6.018 5.427 5.268 5.701 5.43 5.872 
6 2.648 2.648 2.648 2.648 2.648 2.648 2.648 
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Table 20. M3AE Final State Estimation Measure ex
RMS - State 1 

Case Fix Den Den/Exp Sheldon Sheldon/Exp Prob Den/Prob 

1 2.637 2.426 2.427 2.519 2.693 2.515 2.386 
2 2.434 2.407 2.417 2372 2.522 2.637 2.507 

3 2.477 2.406 2.45 2371 2.399 2.48 2.388 

4 4.306 4.477 4.315 4.501 4.753 4.34 4.632 

5 3.194 3.334 3.123 2.717 3.308 3.333 3.344 

6 0.785 0.785 0.785 0.785 0.785 0.785 0.785 

Table 21. M3AE Final State Estimation Measure eRMS - State 2 

Case Fix Den Den/Exp Sheldon Sheldon/Exp Prob Den/Prob 

1 3.353 3.007 3.08 3.199 3.434 3.183 2.935 
2 3.1 3.047 3.043 3.009 3.097 3.127 2.912 

3 3.25 3.042 3.094 3.108 3.083 3.264 3.112 

4 6.322 6.398 6.214 6.67 6.722 6.381 6.474 

5 3.811 4.047 3.794 3.016 3.796 3.55 3.83 

6 0.858 0.858 0.858 0.858 0.858 0.858 0.858 

Table 22. M3AE Final State Estimation Measure eRMS - State 3 

Case Fix Den Den/Exp Sheldon Sheldon/Exp Prob Den/Prob 

1 4.061 4.049 4.059 4.049 4.048 4.092 4.044 
2 4.045 4.036 4.048 4.037 4.038 4.068 4.041 

3 4.044 4.034 4.045 4.033 4.032 4.047 4.039 

4 4.804 4.806 4.805 4.8 4.801 4.804 4.796 
5 5.405 5.412 5.409 5.41 5.425 5.385 5.397 

6 4.322 4.322 4.322 4.322 4.322 4.322 4.322 
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